• 제목/요약/키워드: 단락 자동 구분

검색결과 5건 처리시간 0.024초

단락 자동 구분을 이용한 문서 요약 시스템 (Korean Summarization System using Automatic Paragraphing)

  • 김계성;이현주;이상조
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권7_8호
    • /
    • pp.681-686
    • /
    • 2003
  • 본 논문은 단락의 자동 구분을 통해 중요한 문장을 추출하는 요약 시스템을 제안한다. 먼저 어휘의 재출현 여부를 파악하여 어휘의 일치도와 어휘의 역할 변화와 같은 재출현 어휘의 양상 정보를 수집하고, 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 추출한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않기 때문에 수사 구조가 자주 발견되지 않는 문서에도 적용이 가능하다.

단락 자동 구분을 통한 중요 문자 추출 (Setences Extraction System using Automatic Division of Paragraph)

  • 김계성;이현주;정영규;서연경;손기준;이상조
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.233-237
    • /
    • 2000
  • 본 논문은 단락의 자동 구분을 통한 중요 문장 추출 시스템을 제안한다. 먼저 어휘의 재출현 여부와 어휘의 일치도, 어휘의 역할 변화를 파악하여 재출현 어휘에 대한 양상을 분석하고 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장 간 긴밀도를 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종 요약문을 생성한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않으며, 단순히 어휘의 출현 빈도만을 이용하던 기존의 통계적인 방법보다 질높은 요약문을 생성할 수 있다. 또한 제안한 방법론은 본 논문이 대상으로 삼고 있는 신문기사의 영역뿐만 아니라 다른 영역으로의 적용이 가능하다.

  • PDF

단락 자동 구분을 통한 중요 문장 추출 (Setences Extraction System using Automatic Division of Paragraph)

  • 김계성;이현주;정영규;서연경;손기준;이상조
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.233-237
    • /
    • 2000
  • 본 논문은 단락의 자동 구분을 통한 중요 문장 추출 시스템을 제안한다. 먼저 어휘의 재출현 여부와 어휘의 일치도, 어휘의 역할 변화를 파악하여 재출현 어휘에 대한 양상을 분석하고 이를 통하여 문장 간의 긴밀도를 정량적으로 계산한다. 다음으로 측정된 문장 간 긴밀도룰 이용하여 사용자의 추출 범위에 따라 단락을 구분하고, 각 단락의 대표 문장을 선정하여 최종문을 생성한다. 제안한 방법은 문서 제목, 문장의 위치, 수사 구조 등의 정보를 이용하지 않으며, 단순히 어휘의 출현 빈도만을 이용하던 기존의 통계적인 방법보다 질 높은 요약문을 생성할 수 있다. 또한 제안한 방법론은 본 논문이 대상으로 삼고 있는 신문기사의 영역뿐만 아니라 다른 영역으로의 적용이 가능하다.

  • PDF

요약문 생성을 위한 중간 개념 표현 (Intermediate Concept Representation for Automatic Summary)

  • 서연경;노태길;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.355-357
    • /
    • 2001
  • 사건, 사고 관련 기사의 요약은 단순히 원문이 무엇을 말하는 가를 지시하는 것보다 가능한 요지를 판독하면서 필요한 정보를 누락시키지 않고 표현할 수 있는 것이 바람직하다. 이를 위하여 본 논문에서는 사건, 사고 관련 기사의 자동 요약문 생성을 위한 중간 개념 표현 방법을 제안한다. 단락 자동 구분을 통한 중요 문장 추출을 거쳐 각 단락의 중심문장을 파악하고, 단락내의 정보들을 의미 파악된 중심 문장에 추가, 병합하여 단락의 내용을 대표하는 Paragraph Representation Structure(PRS)를 생성한다. 이들은 통합과정을 거쳐 하나의 Unified Representation Structure(URS)로 만들어지며, 이것은 중간 개념 표현으로 다국어 자동 요약문 생성을 위한 기반이 될 수 있다. 본 연구에 이용한 코퍼스는 비행기, 선박, 차량, 열차 사고와 화제 폭발 및 사건 관련 신문 기사를 대상으로 한다.

  • PDF

웹페이지 분석을 위한 딥러닝 모델 학습과 구현에 관한 연구 (Research on Training and Implementation of Deep Learning Models for Web Page Analysis)

  • 김정환;조재원;김진산;이한진
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.517-524
    • /
    • 2024
  • 본 연구는 ChatGPT 서비스의 개시 이후 인공지능 혁명이라 일컬어지는 시대적 배경 속에서, 웹사이트의 제작과 인공지능의 융합을 위해 딥러닝 모델을 학습 및 구현하고자 한다. 딥러닝 모델은 수집한 3,000개의 웹페이지 이미지를 구성요소와 레이아웃 분류체계 기반의 데이터 가공을 통해 학습하였으며, 다음과 같은 세 가지 단계로 구분하여 진행하였다. 첫째, 인공지능 모델에 관한 선행연구를 조사하여 구현하고자 하는 모델에 가장 적합한 알고리즘을 선택하였다. 둘째, 적합한 웹페이지 및 단락 이미지를 수집하고 분류 및 가공하였다. 셋째, 딥러닝 모델을 학습시키고 서빙 인터페이스를 연동해 모델의 실제 결과를 확인하였다. 이렇게 구현된 모델은 실제 웹페이지를 구성하는 복수의 단락을 탐지하고, 단락별 규모, 요소, 특징을 분석하여 분류체계를 기반으로 의미 있는 데이터를 도출할 것이다. 이 과정은 점차 발전하여 웹페이지를 보다 정밀하게 분석할 수 있게 될 것이다. 그리고 정밀 분석기법을 역으로 설계하여, 인공지능이 완벽한 웹페이지를 자동으로 생성할 수 있는 연구의 초석이 될 것으로 기대한다.