• Title/Summary/Keyword: 단기 수질예측

Search Result 27, Processing Time 0.03 seconds

Artificial Neural Networks for Forecasting of Short-term River Water Quality (단기 하천수질 예측을 위한 신경망모형)

  • Kim, Man-Sik;Han, Jae-Seok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.11-17
    • /
    • 2002
  • The purpose of this study is the prediction of pollutant loads into Seomjin river watershed using neural networks model. The pollutant loads into river watershed depend upon the water quantity of inflow from the upstream as well as the water quality of the inflow into the river. For the estimation of pollutants into river, a neural networks model which has the features of multi-layered structure and parallel multi-connections is used. The used water quality parameters are BOD, COD and SS into Seomjin river. The results of calibration are satisfactory, and proved the availability of a proposed neural networks model to estimate short-term water quality pollutants into river system.

  • PDF

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Water Quality Forecast in the Mulgeum Using WASP 7.2 and Forecasted Zooplankton (WASP 7.2와 예측된 동물성플랑크톤을 이용한 물금의 수질예측)

  • Choi, Jung-Min;Lee, Sang-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1679-1683
    • /
    • 2008
  • 낙동강 하류지점인 물금은 2003년${\sim}$2005년의 대부분이 부영양화의 기준을 넘고 있다. 하구둑 건설이후, 담수화 된 하구둑 상부에서는 부영양화가 가속화되었다. 수질의 악화는 물론 강 생태계의 구조와 기능의 변화까지 초래되었다. 지난 $7{\sim}8$년 간 낙동강 하류 지역은 갈수기 식물성 플랑크톤 군집의 대거 번성으로 인한 부영양화로 연중 심각한 수질 오염문제를 야기하고 있다. 본 연구는 WASP 7.2 모형과 예측된 동물성플랑크톤을 이용하여 낙동강 유역의 하류 지역인 물금의 부영양화를 예측하는 것이다. 2005년의 관측값을 초기조건으로 고정하고 DO, $NO_3$-N, $PO_4$-P, 기상청에서 예보되는 기온을 사용하여 동물성 플랑크톤을 신경망 모형으로 예측한 뒤, 수온 대신 기상청의 기온을 입력하여 $1{\sim}3$일 후의 단기 수질을 예측하였다. 부영양화 예측결과와 2005년의 월별 수질 관측값을 통계량을 이용하여 분석하였다. $1{\sim}3$일 후의 예측결과 수질항목 중 부영양화의 기준이 되는 클로로필-a, 총 질소, 총 인의 경우는 예측기간 모두 관측값에 적합하게 모의되었다. WASP 7.2 모형의 수질항목 관측자료를 초기값으로 입력하고, 예측된 동물성 플랑크톤의 개체수와 기상청에서 예보되는 기온을 사용한 수질모의는 낙동강의 단기 수질예측에 유의한 의미가 있을 것으로 사료된다.

  • PDF

A Study on Data-driven Modeling Employing Stratification-related Physical Variables for Reservoir Water Quality Prediction (취수원 수질예측을 위한 성층 물리변수 활용 데이터 기반 모델링 연구)

  • Hyeon June Jang;Ji Young Jung;Kyung Won Joo;Choong Sung Yi;Sung Hoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.143-143
    • /
    • 2023
  • 최근 대청댐('17), 평림댐('19) 등 광역 취수원에서 망간의 먹는 물 수질기준(0.05mg/L 이하) 초과 사례가 발생되어, 다수의 민원이 제기되는 등 취수원의 망간 관리 중요성이 부각되고 있다. 특히, 동절기 전도(Turn-over)시기에 고농도 망간이 발생되는 경우가 많은데, 현재 정수장에서는 망간을 처리하기 위해 유입구간에 필터를 설치하고 주기적으로 교체하는 방식으로 처리하고 있다. 그러나 단기간에 고농도 망간 다량 유입 시 처리용량의 한계 등 정수장에서의 공정관리가 어려워지므로 사전 예측에 의한 대응 체계 고도화가 필요한 실정이다. 본 연구는 광역취수원인 주암댐을 대상으로 망간 예측의 정확도 향상 및 예측기간 확대를 위해 다양한 머신러닝 기법들을 적용하여 비교 분석하였으며, 독립변수 및 초매개변수 최적화를 진행하여 모형의 정확도를 개선하였다. 머신러닝 모형은 수심별 탁도, 저수위, pH, 수온, 전기전도도, DO, 클로로필-a, 기상, 수문 자료 등의 독립변수와 화순정수장에 유입된 망간 농도를 종속변수로 각 변수에 해당하는 실측치를 학습데이터로 사용하였다. 그리고 데이터기반 모형의 정확도를 개선하기 위해서 성층의 수준을 판별하는 지표로서 PEA(Potential Energy Anomaly)를 도입하여 데이터 분석에 활용하고자 하였다. 분석 결과, 망간 유입률은 계절 주기에 따라 농도가 달라지는 것을 확인하였고 동절기 전도시점과 하절기 장마기간 난류생성 시기에 저층의 고농도 망간이 유입이 되는 것을 분석하였다. 또한, 두 시기의 망간 농도의 변화 패턴이 상이하므로 예측 모델은 각 계절별로 구축해 학습을 진행함으로써 예측의 정확도를 향상할 수 있었다. 다양한 머신러닝 모델을 구축하여 성능 비교를 진행한 결과, 동절기에는 Gradient Boosting Machine, 하절기에는 eXtreme Gradient Boosting의 기법이 우수하여 추론 모델로 활용하고자 하였다. 선정 모델을 통한 단기 수질예측 결과, 전도현상 발생 시기에 대한 추종 및 예측력이 기존의 데이터 모형만 적용했을 경우대비 약 15% 이상 예측 효율이 향상된 것으로 나타났다. 본 연구는 머신러닝 모델을 활용한 망간 농도 예측으로 정수장의 신속한 대응 체계 마련을 지원하고, 수처리 공정의 효율성을 높이는 데 기여할 것으로 기대되며, 후속 연구로 과거 시계열 자료 활용 및 물리모형과의 연결 등을 통해 모델의 신뢰성을 제고 할 계획이다.

  • PDF

Study on the Prediction of short-term Algal Bloom in Juksan weir Using the Model Tree (모델트리를 활용한 죽산보 단기조류예측에 관한 연구)

  • Lee, Bo-Mi;Yi, Hye-Suk;Chong, Sun-A;Joo, Yong-Eun;Kim, Ho-Joon;Choi, Kwang-Soon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.450-450
    • /
    • 2018
  • 최근 기후변화와 수온상승으로 인한 녹조발생이 빈번하게 나타나며, 녹조발생에 관한 관심은 꾸준히 증가하고 있는 추세이다. 본 연구는 효율적인 녹조관리를 위하여 모델트리를 활용하여 클로로필-a 단기조류예측 기법을 개발하였다. 대상지역으로 영산강수계의 죽산보를 선정하였으며, 2013년 1월부터 2016년 12월까지 나주 수질자동측정망의 일 단위자료와 동일기간 광주 기상청의 일별 기상자료를 이용하였다. 상관 분석을 통해 T-N, T-P, N/Pratio와 클로로필-a, 수온, 일사량, 강수량을 독립변수로, 단기(t+1일, t+3일, t+5일, t+7일) 클로로필-a를 종속변수로 선정하여 단기조류예측기법을 개발하였다. 수집한 자료의 데이터세트는 격일 간격으로 Training, Testing 기간으로 구분하여 적용한 결과, 상관계수는 1일 예측 시, Training 기간에 0.89, Testing 기간에 0.91, 3일 예측 시, Training 기간에 0.74, Testing 기간에 0.68, 5일 예측 시, Training 기간에 0.70, Testing 기간에 0.66, 7일 예측 시, Training 기간에 0.63, Testing 기간에 0.62로 나타났다. RMSE(Root Mean Square Error)는 1일 예측 시, Training 기간에 13.96, Testing 기간에 12.22, 3일 예측 시, Training 기간에 20.03, Testing 기간에 22.14, 5일 예측 시, Training 기간에 21.32, Testing 기간에 22.57, 7일 예측 시, Training 기간에 23.52, Testing 기간에 23.45로 나타났다. 예측주기에 따라 모델트리와 회귀식에서 활용한 독립변수는 1일 예측 시, 모델트리는 N/Pratio, 클로로필-a, 회귀식은 클로로필-a로 다르게 나타났다. 반면, 3일, 5일, 7일 예측 시, 모델트리와 회귀식에 활용된 변수는 같게 나타났다. 클로로필-a, 수온, 일사량은 5일 예측 시 활용된 변수로, 3일 예측 시에는 기상항목인 강수량이, 7일 예측 시에는 수질항목인 T-N, N/Pratio가 추가되었다. 특히 1일 예측 시 일 때, 높은 예측정도와 활용된 변수의 수가 적게 나타나는 것을 확인하였으며, 예측기간이 길어질수록 예측의 정확성이 낮아지고, 활용된 변수의 수가 많아지는 것을 확인하였다. 향후 적정한 예측기간을 판단하고 예측가능성을 높이기 위해서는 지속적인 자료취득 및 개선이 필요하며, 이를 바탕으로 적절한 단기조류예측이 가능할 것으로 판단된다.

  • PDF

Effect on Dams' Joint Operation in Geum River Basin using Water Management System (금강유역 물관리시스템의 연계운영 효과)

  • Ko, Ick-Hwan;Kim, Sheung-Kown;Kim, Jae-Hee;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1383-1387
    • /
    • 2008
  • 우리나라는 계절적으로 편중된 강우특성 때문에 이수관리와 치수관리가 분리될 수 없고, 하천유역 상 하류의 수량과 수질은 유기적으로 연관되어 있으므로 수자원관리는 하천유역단위로 통합적으로 이루어져야 한다. 특히 한정된 수자원으로 하천의 수량과 수질 목표를 동시에 달성하기 위해서는 물의 수요와 공급을 실시간 정보로 획득하면서 기상과 유출 분석기술을 활용하여 운영기간 동안의 용수수요와 공급을 예측하고, 이를 바탕으로 하천과 저수지의 수량과 수질을 고려한 유역 저수지군 시스템의 최적 물공급계획을 수립 시행할 수 있도록 지원하는 통합 물관리 Toolkit과 운영 기술이 필요하다. '유역통합 물관리시스템(IRWMS)'은 유역의 유출량 산정과 예측을 담당하는 유역유출 예측시스템(RRFS)과 연동하여 장 단기 저수지군 시스템의 최적운영 의사결정을 지원하기 위한 월단위 최적운영모형(SSDP), 일단위 최적운영모형(CoMOM), 그리고 유역물배분 모의운영모형(KModSim)이 포함되어 있다. RRFS로부터 예측된 수계내 소유역별 유입량 및 수요량(농업, 공업, 생활용수) 정보를 토대로, SSDP 또는 SSDP-CoMOM 연계모형으로부터 구한 월 또는 일 단위 최적저류량 및 방류량을 산정, 이를 KModSim 모형에 입력하여 장 단기 모의를 통하여 유역 물관리 의사결정의 최종단계에 해당하는 저수지군 최적방류량 결정에 필요한 정보 및 시나리오를 제공하게 된다. 본 연구에서는 개발된 저수지운영 요소모형들을 이용하여 금강수계 저수지군의 연계운영에 적용하였다.

  • PDF

A Study on Water Quality Management of Seonakdong River Using Surface Water Quality Modeling (하천수질모델링을 통한 서낙동강의 수질관리 방안 연구)

  • Hwang, Jin-Young;Kim, Young-Do;Lee, Nam-Joo;Noh, Joon-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1317-1321
    • /
    • 2007
  • 대표적인 하천수질모형으로는 정상상태 모형인 QUAL2E와 비정상상태 모형인 CE-QUAL-RIV1이 있다. 정상 및 비정상상태 수질모형의 용도는 QUAL2E가 월별 및 순별 장기수질예측에 매우 활용도가 높다고 하면 CE-QUAL-RIV1는 갑작스런 수질사고와 같은 단기수질모의 즉, 댐방류 플러싱효과를 분석하는 효과에 매우 최적화된 모형이라 할 수 있다. 대부분의 하천 수질 예측모델이 비정상상태 흐름이 아닌 정상상태 흐름만을 고려하여 개발되었기 때문에 댐이나 수문에 의해 차단된 조절하천에서 부정류 흐름상태를 고려한 수질예측 모델이 필요하다. 본 연구의 대상 유역인 서낙동강은 상류에는 대저수문, 하류에는 녹산수문이 위치하고 있으며, 이와 같은 수문들에 의하여 하천의 유량이 조절되는 호소형 하천으로 자연적인 하천흐름이 원활하지 않은 정체수역이다. 따라서 장기간 오염물질이 퇴적되고 있으며, 이로 말미암아 수질오염이 매우 심한 곳이기도 하다. 서낙동강은 대저수문 유입량과 녹산수문 방류량에 따른 하천수질의 영향이 크며, 개발욕구가 강한 경상남도 김해시와 부산광역시 강서구가 위치한 수계로서 현재 발생부하량 뿐만 아니라 장래에 예상되는 발생부하량도 매우 큰 하천이다. 이와 같은 문제를 해결하기 위한 가장 근원적인 방안은 적절한 수문운영을 통하여 수역 내의 유속을 적절히 조절하고, 이를 통하여 수질개선 효과를 확보하는 것이다. 본 연구에서는 정체수역인 서낙동강의 대저수문 유입량과 녹산수문 방류량을 수문운영에 따라 하천유량을 통하여 실측하고, 이로 인한 수질 변화를 체계적으로 조사함으로써 다수의 수문운영 조건에 따른 비정상상태에서의 서낙동강 본류의 수질을 실측하여, 수질이 좋은 낙동강 본류 원수의 유입에 따른 수질개선 효과와 녹산수문 방류에 의한 플러싱 효과를 정량적으로 평가해보고자 하였다. 본 연구에서 실측된 수문 유입량 및 방류량 증가에 따른 하천수질변화 결과를 비정상 하천수질모형을 통해 검증하고, 이를 활용하여 서낙동강의 수질 개선을 위한 적절한 유량 및 운영방안을 구축할 수 있을 것으로 판단된다.

  • PDF

Development of L-THIA sub-daily flow-water quality prediction system (L-THIA 시단위 유량-수질 예측 시스템 개발)

  • Gwanjae Lee;Yonghun Choi;Seoro Lee;Kyoung Jae Lim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.262-262
    • /
    • 2023
  • 기후변화 및 도시화에 따른 강우 패턴의 변화는 수문 변화를 야기시키며, 이에 따른 영향을 평가하고 예측하기 위해서는 수문학적 모델을 통해 정량화하는 과정이 필요하다. 그러나 기존에 개발되어 사용되고 있는 대부분의 수문학적 모델은 해외에서 개발되어 국내 유역 특성을 반영하지 못하는 한계가 있다. 이러한 한계점을 극복하기 위해서 L-THIA ACN-WQ 2016과 2018 모델이 개발되어 적용성이 평가된 바 있다. 하지만 L-THIA ACN-WQ 모델의 경우 시단위 유량 및 수질 모의가 불가능한 한계점이 있다. 소규모 유역이나 도시화된 지역에서는 하루에 여러 번의 강우 이벤트가 발생하거나 단기간에 많은 양의 강우가 발생하는 경우가 많기 때문에, 이러한 강우-유출을 평가하기 위해서는 시단위 모의가 필요하다. 본 연구에서는 시단위 유량-수질 모의가 가능한 L-THIA sub-daily WQ 모델을 개발하였으며, 갑천 유역과 복하천 유역에서 적용성을 평가하였다. L-THIA sub-daily WQ 모델은 SCS-CN 방법과 Green-Ampt 방법을 함께 고려할 수 있도록 개발하였으며, 국내의 토지이용 및 강우 특성을 고려할 수 있도록 점근 CN과 강우 계급별 EMC를 활용하였다. 갑천 유역과 복하천 유역에서 시단위 유량 예측 결과 R2는 0.61~0.69, NSE는 0.61~0.65, PBIAS는 -4.0~-7.3으로 모의된 시단위 유량이 자연현상을 잘 모의하는 것으로 나타났으며, 수질 예측 결과 T-P와 SS가 자연현상을 잘 모의하는 것으로 나타났다. 따라서, 본 연구에서 개발된 L-THIA sub-daily WQ 모델은 점오염원을 포함하고 있는 도시유역에서 비점오염원에 평가에 활용될 수 있을 것으로 사료된다.

  • PDF

Uncertainty of the operational models in the Nakdong River mouth (낙동강 하구 환경변화 예측모형의 불확실성)

  • Cho, Hong Yeon;Lee, Gi Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.4-4
    • /
    • 2022
  • 낙동강 하구 환경/생태 복원을 위하여 "해수유입"으로 하구환경을 조성하는 사업이 추진되고 있으며, 해수 유입 규모와 빈도에 따른 생태환경변화를 예측하는 연구수요가 증가하고 있는 상황이다. 보다 구체적으로는 단기간의 해수유입에 의한 흐름 및 염분 확산범위 예측과 더불어 보다 장기간의 지형변화, 수질환경 변화, 생태환경 변화 등에 대한 예측이 필요한 상황이다. 그리고 그 예측의 대부분을 수치모델에 크게 의존하고 있는 상황이다. 그러나, 수치모형을 이용한 단기 예측은 가까운 미래에 대한 입력조건을 사용하여야 하기 때문에 입력조건에 대한 불확실성이 포함되고, 환경생태모형의 불확실성에 따른 예측 한계 등으로 인하여 오차가 누적되기 때문에 직접적인 활용에 크게 제한이 따를 수 있다. 또한 운영과정에서 어떤 분산, 편향 오차 등이 지속적으로 발생하는 경우, 모델 예측 결과에 대한 신뢰수준이 크게 감소하기 때문에 모델의 적절한 운영기법이 요구된다. 모델은 관심을 가지는 자연현상에 대한 근사(approximation)이고, 예상하지 못한 오차가 발생할 수 있기 때문에 관측 자료를 이용한 자료동화(data assimilation) 과정이 운영모델에서는 필수적인 부분이다. 이론적인 기반이 탄탄한 유체역학 기반 기상예측의 경우에도, 가용한 모든 지점의 관측 자료를 이용한 자료 동화과정을 통하여 모델 예측 결과를 개선하여 나가는 과정을 포함하여 운영하고 있다. 이 과정이 포함하는 중요한 개념은 수치모델이 가지고 있는 (예측 수준의) 한계를 인정하고, 수치모델에 전적으로 의존하는 것이 아니라 관측 자료를 이용하여 그 한계를 저감하여 나가는 과정이다. 모니터링은 모델의 한계를 알려주는 지표이다. 모델링과 모니터링의 불가피한 상호의존 관계를 의미하는 이 개념은 단기간의 흐름, 염분 확산 예측으로 한정되지 않고, 장기적인 변화가 예상되는 생태환경변화 모델에도 적용이 된다. 즉각적인 변화보다는 장기적인 관점에서 파악하여야 하는 생태학적인 변화는 보다 다양한 인자가 관여하기 때문에 어떤 측면에서는 모델보다는 적절한 빈도와 항목에 대한 관측계획 수립(monitoring design)이 더 중요하다고 할 수 있다. 이론적인 질량보존(mass conservation) 방정식을 기반으로 하는 모델은 다양한 현실적인 인자의 영향을 받기 때문에 모델의 한계를 인정하고, 모니터링 자료를 적극적으로 활용하여 불확실성을 저감하는 접근방식이 요구된다.

  • PDF

점곤쟁이, Neomysis awatschensis에 대한 수종 중금속의 96시간-반수치사농도와 난부화율과의 관계

  • Jin, Pyung;Lee, Jung-A;Kim, Kyung-Sun;Kim, Jae-Won;Lee, Jung-Sik;Kim, Heung-Yoon;Lee, Bok-Kyu;Shin, Yoon-Kyung
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.10a
    • /
    • pp.224-225
    • /
    • 2002
  • 환경오염원의 단기독성 생물검정 시험 결과로부터 중장기적인 생리적 저해영향을 파악하는 것은 검정해야 할 중요한 과제의 하나다. 효율성 때문에 단기독성시험을 위주로 하지만, 재생산에 관련되는 중ㆍ장기적 피해를 예측하는 것은 지난한 일이다. Tabata(1979)는 수산생물에 대한 각종 수질오염물질의 반수치사농도와 난부화에 미치는 장기영향한계농도와의 관계를 개관하여 단기와 장기간에 0.1∼0.001의 적용계수를 제시한바 있다. (중략)

  • PDF