• Title/Summary/Keyword: 단기수요예측

Search Result 141, Processing Time 0.035 seconds

Data mining analysis for short-term water demand forecasting (물 수요예측을 위한 데이터 마이닝 기법 분석)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1771_1772
    • /
    • 2009
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.

  • PDF

Dynamic model for on-line short-tern load forecasting (실시간 단기 부하예측을 위한 동적모험)

  • 박문희;조형기;정근모;최기련
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • 본 연구에서는 단기 전력수요예측에 있어서 필요한 데이터의 수와 계산시간을 경감하면서 보다 정확성을 기할 수 있는 앨고리즘의 개발을 위하여 이에 적합한 칼만필터링 앨고리즘을 고찰하였다. 또한 칼만필터 앨고리즘을 토대로 필터의 모형화를 통하여 단기 전력수요를 예측할 수 있는 실시간 동적예측 모형을 구축하고 그 적용 가능성을 시험하였다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

The short-term water forecasting based on ELM model (ELM(Extreme Learning Machine)기반의 단기 물 수요예측 알고리즘)

  • Shin, Gang-Wook;Hong, Sung-Tack
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1728-1729
    • /
    • 2011
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측알고리즘 개발에 있어서, 지방 소도시 지역의 물 공급패턴에 대한 영향인자를 도출하기 위하여 기상환경인자와 과거 물 공급량에 대한 상관성 분석을 실시하였다. 그리고, 신경회로망 이론 중 ELM알고리즘을 적용한 단기 물 수요예측알고리즘을 개발하여 현장 적용성을 검토하고자 한다.

  • PDF

Seasonal Prediction Model for Urban Water Demand (급수수요량의 계절별 예측모델에 관한 연구)

  • Gu, Ja-Yong
    • 수도
    • /
    • v.23 no.6 s.81
    • /
    • pp.36-46
    • /
    • 1996
  • 급수 수요량의 단기예측은 상수도 시스템의 유지관리 계획 수립의 중요한 구성 요소이며, 대상지역의 특성을 민감하게 반영하고 있으므로, 급수수요의 지역 특성과 관련된 수요 구조의 파악이 무엇보다 중요한 과제라 할 수 있다. 따라서 본 논문에서는 상수도 시스템의 합리적 배수 제어 획을 실시하기 위한 기초적 정보인 급수량 변동 구조에 대해 통계적인 분석을 실시하였다. 특히 일단위의 급수량에 초점을 두어 급수량의 시계열 특성과 급수량 영향 요인 분석을 통하여 대상 지역의 정상 시계열장과 급수량에 영향을 미치는 요인을 분석하였다. 또한 급수량의 계절별 단기 수요 예측 모델을 제안하기 위하여 통계적 예측 수법으로 평가 받고 있는 MARIMA (Multiple Auto Regressive Integrated Moving Average) 모델을 급수량 단기 수요 예측에 적용하여 계절별 급수 수요량을 예측하였다.

  • PDF

A scheme for short-term load forecast considering hourly load profile characteristics of weekdays and weekend (평일과 주말의 시간대별 부하특성을 고려한 단기 전력수요예측 기법)

  • Lim, Hyeong-Woo;Moon, Si-Woong;Park, Jeong-Do;Song, Kyung-Bin;Joo, Sung-Kwan;Shin, Ki-Jun;Cho, Bum-Seob;Cha, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.71-72
    • /
    • 2011
  • 단기 전력수요예측의 오차를 줄여 불필요한 전력생산을 이전에 방지하는 것은 매우 중요하다. 본 논문에서는 오차율이 높은 연휴 전 평일의 단기 전력수요예측 정확도를 높이기 위해 이전 평일과 주말의 데이터를 이용한 새로운 예측 방법을 제안하고, 추석연휴 전 평일에 제안한 방법을 적용하여 수요예측에 대한 오차가 개선됨을 확인하였다.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • 박영진;황보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA (VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로)

  • Cho, Jung-Hyeong
    • International Commerce and Information Review
    • /
    • v.16 no.3
    • /
    • pp.73-96
    • /
    • 2014
  • The purpose of this research is to evaluate a short-term export demand forecasting model reflecting individual passenger vehicle brands and market characteristics by using Vector Autoregressive (VAR) models that are based on multivariate time-series model. The short-term export demand forecasting model was created by discerning theoretical potential factors that affect the short-term export demand of individual passenger vehicle brands. Quarterly short-term export demand forecasting model for two Korean small vehicle brands (Accent and Avante) were created by using VAR model. Predictive value at t+1 quarter calculated with the forecasting models for each passenger vehicle brand and the actual amount of sales were compared and evaluated by altering subject period by one quarter. As a result, RMSE % of Accent and Avante was 4.3% and 20.0% respectively. They amount to 3.9 days for Accent and 18.4 days for Avante when calculated per daily sales amount. This shows that the short-term export demand forecasting model of this research is highly usable in terms of prediction and consistency.

  • PDF

Weekdays Load forecasting of Domestic Power System Using Artificial Neural Network (인공신경회로망을 이용한 계통 주중 전력수요예측)

  • Jeon, Seung-Wook;Park, Woo-Jae;Park, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.610-611
    • /
    • 2011
  • 전력 계통의 운용 계획을 최적화하기 위해서 연간 최대전력수요와 시간별 전력수요에 대한 장단기간의 수요 예측에 관한 연구가 활발하게 진행 중이다. 특히, 단기 수요 예측은 발전비용과 신뢰도에 크게 영향을 주며, 전력계통의 제어 및 단기계획, 경제급전, 전력조류계산 등의 입력 자료로 활용된다. 많은 예측 문제에 폭넓게 사용되고 있는 인공신경회로망은 전력수요 예측에도 자주 쓰이는 기법이다. 본 논문에서는 이를 보다 정확히 하기 위해 기존의 인공신경회로망 기법을 개선하여 보다 정확한 예측을 보였다.

  • PDF