본 연구는 실시간 자료를 기반으로 k-NN을 활용한 단기 교통상황 예측 시 각 단계별 세부절차 및 변수결정, 입력자료 구축 등의 각 단계별 잠재적 예측오차에 대한 원인분석 및 시사점 도출을 목적으로 한다. 다양한 단기 예측모형에 대한 선행연구 검토를 통하여 k-NN 모형의 유용성을 검토하였고 이에 대한 적용가능성을 분석하였다. 본 연구의 k-NN 모형은 이력자료 평활화 및 패턴DB 구축의 입력자료 부분, 실시간 자료와 과거 이력자료와의 유사성 측정 및 k 근접이웃 결정 등의 k-NN 알고리즘 부분, 그리고 예측 시간간격에 따른 출력결과 부분 등으로 구성되며 올림픽대로 김포방향 한강대교 남단~여의상류IC 구간을 대상으로 분석을 실시하였다. 교통자료의 불규칙 잡음으로 인하여 정확한 패턴매칭을 위해서 이력자료의 평활화를 실시하였으며, 이력자료 패턴 DB는 일반 및 이벤트 상황으로 구분하여 활용하였다. 최적의 시계열 자료 및 k 근접이웃 결정을 위해서 시행착오 방법을 적용하였으며, 단기 교통상황 예측 시 예측 시간간격이 증가할수록 예측오차가 증가하는 패턴, 그리고 교통상태가 급변하는 시점에서도 예측오차가 증가함을 알 수 있었다. 본 연구의 k-NN 모형에 대한 각 단계별 예측오차에 대한 원인을 분석하여 개선방향을 제시함으로써 향후 신뢰성 있는 단기 교통상황예측 정보제공 및 시스템에 활용이 가능할 것으로 판단된다.
최근의 텔레매틱스 교통정보제공서비스는 지능형 교통시스템의 구축을 통한 실시간 교통정보 수집이 가능해짐에 따라 다양해지고 있다. 본 논문에서는 고품질의 다양한 교통정보제공을 위해 필요한 미래시간에 대한 단기 교통정보 예측 모델을 제안하고 개발하였다. 단기 예측 모델은 현재로부터 가까운 미래의 교통 상황을 예측하기 위한 교통 모델로 본 연구에서 제안한 예측 모델은 각 도로에 대하여 5분 이후부터 1시간 이전까지의 미래시간에 대한 차량 평균 속도를 예측 결과로 준다. 본 연구에서 제안한 예측 모델은 베이지안 네트워크에 기반을 두고 있으며 각 도로의 미래시간 교통상황에 영향을 줄 수 있는 요인들을 분석하여 베이지안 네트워크의 원인노드로 설정하였다. 설계된 베이지안 네트워크에 대하여 실시간 교통정보데이터를 이용하여 가우시안 혼합 분포를 가정한 베이지안 네트워크의 결합 확률 밀도 함수를 EM(Expectation Maximization) 알고리즘으로 구하여 미래시간의 교통정보를 예측하였다. 예측 모델의 정확도 검증을 위해 실시간 교통데이터로 다양한 실험을 수행하였다. 실험결과 제안된 모델은 현재 시간으로부터 10분 이후, 30분 이후, 60분 이후 예측 오차로 각각 4.5, 4.8, 5.2의 RMSE(Root Mean Square Error) 값을 주었다.
최근 몇 년간 도시교통문제의 해결책으로 부각되어온 지능형교통체계(ITS : Intelligent Transport System)의 한 분야로 첨단여행자 정보체계(ATIS : Advanced Travellers Information System)는 자동차에 장착된 항법장치(CNS)를 통해 운전자에게 원하는 목적지까지 최적경로를 제공하거나 경로에 대한 통행시간 정보를 제공 또는 예측해 주는 시스템이다. 본 연구에서는 이러한 최적경로 제공이나 통행시간 예측에 있어 좀 더 효율적인 통행시간 예측모형을 개발하고자 하였다. 현재까지의 통행시간 예측은 운전자가 통행을 시작할 때의 교통상황에 대한 정보이기 때문에 운전 중에 달라지는 교통상황을 반영할 수 없어 이로 인해 운전자가 경험하는 통행시간과 큰 차이를 발생시킬 수 있다. 본 연구에서는 이러한 불합리적인 예측시스템을 개선시킬 수 있는 예측된(predicted) 통행시간 예측 모형을 개발하고자 하였다. 이를 위해 우선 통행시간 예측모형을 특정링크에 적용시켜 모형들의 예측치와 실제 통행시간을 비교하여 교통량 흐름 패턴에 따라 어느 모형이 적합한지, 또 예측시간이 달라짐에 따라 모형들의 적합도와 첨두와 비첨두시 예측시간 간격에 따라 예측치와 실측치의 오차율을 알아보았다, 이를 통해 선정된 확률과정 모형과 칼만 필터링 예측모형을 서울시의 4개축에 대해서 다시 적용해 보았다. 그 결과 단기통행시간 예측에 있어서는 칼만필터링모형이, 장기 통행시간 예측에 있어서는 확률과정 모형이 통행시간 예측에 있어 우수한 모형임을 밝혀냈다. 마지막으로 서울시 28개 교통축의 5분 후 통행시간 예측에 칼만필터링 모형을 이용하여 오차분석을 적용하여 보았다. 그 결과 칼만필터링 모형이 신뢰할 만한 오차율을 보였다.
서울시는 IMF 경제위기 상황으로 교통시설 투자감소에 의한 공급정체 현상이 예상됨에 따라 교통수요관리에 대한 의존도를 높일 수밖에 없는 실정이다. 그러나 교통수요관리에 대한 기대에도 불구하고 기존의 서울시 교통 수요관리 정책은 단기 교통수요관리 목표 및 수요관리정책 시행에 따른 효과 분석체계의 부재, 교통현상 변화에 대한 지속적 모니터링 체계의 결함 등 문제점이 있음에 따라 그동안 정책효과에 대한 정확한 홍보가 미흡했으며 정책의 지속적 수용성 확보가 어려웠다. 이러한 문제점을 해결하기 위해 서울시에서는 교통혼잡관리프로그램(CMP)의 도입이 필요하게 되었다. 이 프로그램은 서울시의 단기교통관리목표를 설정한 뒤 적정교통수준을 넘어서는 수요를 감축하기 위한 종합적 교통수요관리시책을 마련하고 선정된 대안의 기대효과를 예측할 수 있는 방법론을 구축하며, 신속하게 시행, 모니터링함으로써 서울의 교통수준을 단기적으로 항시 적정수준으로 유지하는 것을 목적으로 하고 있다. 본 연구에서는 서울시의 CMP의 실행을 위해 교통수요관리 프로그램의 효과예측모형(Seoul Congestion Management Model: SECOMM)을 개발하였다. SECOMM의 개발을 통해 단기교통관리목표를 달성하기 위한 적정 교통수요관리 프로그램의 실행전략을 보다 효과적으로 마련할 수 있을 것으로 기대된다.
통행분포 예측시 목표년도가 단기일 경우에는 성장인자모형의 예측 정확도가 높고, 장기 목표년도의 경우에는 중력모형의 예측 정확도가 높은 것으로 인식되어 오고 있다. 이와 같은 예측모형 적용경향에 대한 검정을 위해 본 연구에서는 대구시 3개 년도(1988년, 1992년, 2004년)의 O-D표를 이용하여 통행분포 예측모형들의 정확도를 비교하였다. 비교는 분석 죤이 대죤인 경우와 중죤인 경우에서 예측모형별로 단기 목표년도의 정확도와 장기 목표년도 정확도를 구분하여 행하였다. 비교결과, 통행분포 예측모형의 통상적인 인식과 다른 결과가 있을 수 있다는 것이 규명되었다.
일반국도의 상시조사 자료는 교통량 조사 장비를 통해 수집되며, 수집된 자료가 누락되거나 불량일 경우 통계자료의 객관성을 유지하기 위해서 보정을 해야 한다. 교통량 결측 자료의 보정을 통계적인 방법으로 접근하여 신뢰성을 높이고자 본 연구에서는 보정 대상 시간과 동일시간의 자료를 적용할 수 있는 자기회귀분석과 보정 대상 지점과 동일 지점의 자료를 적용할 수 있는 계절 시계열 분석을 이용하여 보정하는 방안을 제시하였다. 계절 시계열 분석을 적용하여 결측 자료를 보정한 결과, 결측 기간이 길어질수록 오차가 커지는 것으로 분석되었다. 이것은 단기예측의 경우 실제자료를 이용하여 예측 값을 제시하지만, 장기예측의 경우 예측된 자료를 이용하여 예측값을 제시하기 때문에 신뢰성이 떨어지기 때문이라 판단된다. 자기회귀분석을 적용하여 결측 자료를 보정한 결과, 시계열분석에 비해서 오차가 적은 것으로 분석되었다. 이것은 교통량자료는 과거 패턴보다 현재 시점의 영향을 더 많이 받는 것이기 때문이라 판단된다 하지만 자기회귀분석은 인근에 패턴이 유사한 지점이 있어야 가능하며, 인근에 유사한 지점이 있더라도 그 지점의 자료가 불량일 경우 보정이 불가능하다는 단점이 있다. 이러한 경우에는 과거자료를 이용해서 보정할 수밖에 없으며, 단기 결측의 경우에는 시계열분석을 이용할 수 있다.
4차 산업혁명 시대가 도래함에 따라 빅데이터를 활용하는 딥러닝에 대한 관심이 높아졌으며 다양한 분야에서 딥러닝을 이용한 연구가 활발하게 진행되고 있다. 교통 분야에서도 교통빅데이터를 많이 활용하는 만큼 딥러닝을 연구에 이용한다면 많은 이점이 있을 것이다. 본 연구에서는 통행속도를 예측하기 위하여 딥러닝 기법인 LSTM을 이용한 단기 통행속도 예측 모형을 구축하였다. 예측에 활용한 데이터인 통행속도 데이터가 시계열 데이터인 것을 고려하여 시계열 예측에 적합한 LSTM 모델을 선택하였다. 통행속도를 보다 정확하게 예측하기 위하여 시간적, 공간적 영향을 모두 반영하는 모형을 구축하였으며, 모형은 1시간 이후를 예측하는 단기 예측모형이다. 분석데이터는 서울시 교통정보센터에서 수집한 5분 단위 통행속도를 활용하였고 분석구간은 교통이 혼잡한 강남대로 일부구간으로 선정하여 연구를 수행하였다.
본 연구는 유고로 인한 대기행렬, 통행시간과 같은 혼잡정보를 예측하여 제공하는 것을 목표로 하며, 이것은 교통시설 이용자와 운영자 모두에게 효율적인 대안선택 및 운영을 위한 중요한 요소로 활용된다. 이러한 예측된 사고영향 정보의 제공으로 인하여, 이용자는 유고 구간에 대한 정보를 사전에 인지하여 지체를 최소화 할 수 있고, 운영자는 현재 유고영향을 받을 것으로 예상되는 구간을 효율적으로 관리할 수 있을 것이다. 본 연구에서는 연속류 본선구간에서 단기예측기법을 적용한 유고영향 예측모형을 제안하였다. 본 연구에서 제안한 모형은 MARE를 통하여 상대적인 오차를 비교분석하여, 예측력이 뛰어난 모형을 정립하였다. 본 연구를 시작으로 미시적인 사고영향 예측 모형이 개발된다면 사고발생 시 지체를 최소화하고 사회적인 비용을 줄일 수 있을 것이다.
본 연구의 목적은 '96년말 서울시에서 실시한 가구통행조사를 이용하여 서울시 수단선택모형을 구축하고 그 예측결과를 남산 혼잡통행료 전후저사자료와 비교하여 보다 구체적으로 그 정확성을 검증한 뒤 향후 서울시 교통수요관리 방안의 시행에 따른 수단선택변화 예측의 기본 모형으로 활용하는데 있다. 5가지의 대안모형의 분석결과 통행비용변수(승용차의 경유 주차요금포함)와 총통행시간변수(OVTT와 IVTT의 합), 승용차, 지하철, 택시상수로 구성된 모형이 최적모형으로 분석되었다. 이모형에 의한 시간가치는 9,395원, 승용차의 비용탄력성은-0.6767로서 기존 연구결과의 범위 내에 속한 것으로 나타났다. 최적모형을 이용하여 승용차통행비용이 증가한 경우를 모사분석결과 남산1,3호 터널 혼잡통행료 징수효과와 유사하게 승용차 분담율이 13% 가까이 감소한 것으로 나타나서 모형의 현실적합성도 비교적 높은 것으로 판명되었다. 향후 본 연구에서 선정된 최적수단선택모형을 통행배정모형과 결합하여 다양한 교통수요관리 방안에 따른 효과를 예측하는데 활용하면 서울과 같은 대도시의 단기적 교통관리의 수준을 한 단계 높이는데 기여할 것으로 판단된다.
정확한 교통정보의 예측은 출발지로부터 목적지까지의 최적경로를 제공할 수 있으며, 이로 인해 시간과 비용의 절감 효과를 얻을 수 있다. 본 논문에서는 다양한 교통정보 예측 방법 중 확률 모델을 기반으로 교통정보를 예측하는 베이지안 네트워크 방법을 이용한다. 기존 연구에서는 베이지안 네트워크 예측 방법이 모든 시간대에서의 데이터를 학습에 사용하는 것과는 달리, 본 논문에서는 예측하고자 하는 시간대와 동일한 요일과 시간에 해당하는 데이터만을 선별적으로 학습에 사용한다. 서로 다른 두 가지 학습방법에 따른 예측 결과의 정확도는 일반적으로 많이 사용되는 MAPE(Mean Absolute Percentage Error)로 검증하였으며, 서울 시내 14개의 링크 구간에 대해 실험을 진행하였다. 실험결과는 본 논문에서 제안한 방법이 모든 시간대의 데이터를 학습에 사용한 방법에 비해 MAPE의 관점에서 더 높은 정확도를 가진 교통 예측 값을 계산할 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.