• Title/Summary/Keyword: 다환방향족 탄화수소 (PAHs)

Search Result 155, Processing Time 0.025 seconds

Distributions and Sources of Polycyclic Aromatic Hydrocarbons in the Tidal Flat Sediments from Incheon Coastal Area (인천연안 갯벌의 다환방향족탄화수소의 농도분포와 발생원 평가)

  • Park, Jung Hwan;Lee, Choong Dae;Kim, Jin Han
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.441-451
    • /
    • 2013
  • Samples for estimating concentrations of polycyclic aromatic hydrocargons(PAHs), total petroleum hydrocarbons(TPHs), and benzene-toluene-ethylbenzene-xylene(BTEX) were collected at the tidal flat sediments of 8 coastal sites in Incheon, at seventy-two sampling stations for the surface sediment and twenty-four stations for the sediment core, twice in the spring and fall in 2011. This study was performed to evaluate the distributions of seasonal and spatial concentrations of PAHs, TPHs, and BTEX in the tidal flat sediments. The source origin of PAHs were carried out. The total average concentration of PAHs in the tidal flat sediment was $95.62{\mu}g/kg$. The characteristic of PAHs concentration distributions was observed that the average concentration in the autumn was lower than that in the spring, and higher concentration in the sediment core than the surface sediment, and greater vertical concentration at the top rather than the bottom in the sediment core. The total average concentration of TPHs at all sampling sites was in the value of 46 mg/kg. The characteristic of the TPHs concentration distribution was observed that the average concentration in the fall was much higher than that in the spring, and higher concentration in the surface sediment than the sediment core. The possible source of PAHs inputs were mainly derived from both pyrogenic and petrogenic origin at the surface sediment at Janghwari site and the sediment cores of both Sorae and Okyeon sites, while the rest sites of study areas originated with pyrogenic combustion.

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Atmospheric Samples by Synchronous 2nd Derivate Spectrofluorimetry (동시형광 분광광도법에 의한 대기 시료 중의 다환방향족 탄화수소(PAHs)의 분석)

  • 유광식;정선이;정지영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.129-138
    • /
    • 2004
  • Determination of some PAHs in ambient air at Ulsan have been carried out by collection of the components into n-hexane followed by synchronous spectrofluorimetric technique. 10 PAHs, such as acenaphthene (Ace), anthracene (Anth), benz[a]anthracene (BaA), benzo[b]fluoranthene (BbFt), benzo[k]fluoranthene (BkFt) benzo[a]pyrene (BaP), chrysene (Chry), phenanthrene (Phen), fluoranthene (Ft), perlyrene (Per), and pyrene (Pyr) in air samples were able to determine separately by synchronous spectrofluorimetry. Calibration curves for those components were linear for the concentration range of 0.2∼166ppb PAHs with the correlation factor of 0.9985∼0.9999. The predominant contribution was phenanthrene which was included 36.9∼85.1% to the overall level of the 10 PAHs in some areas. Also benzo[a]pyrene which was known to carcinogenicity was detected from 6.4 to 55.8ng/㎥, benzo[a]anthracene of some areas was contained from 21.9∼153ng/㎥.

Measurement of Dry Deposition of Polycyclic Aromatic Hydrocarbons in Jeoniu (전주지역에서 다환방향족 탄화수소의 건식 침적 측정)

  • Kim, Hyoung-Seop;Kim, Jong-Guk;Ghim, Young-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.242-249
    • /
    • 2007
  • Deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) were measured at the Chonbuk National University located in Jeonju between June and November 2002. Fluxes of gaseous and particulate PAHs were separately obtained using a water surface sampler (WSS) and a dry deposition plate (DDP). Most of PAHs were deposited in the gaseous form since the low molecular weight PAHs dominates in the atmosphere. The deposition velocity of particulate PAHs was higher than that of gaseous PAHs when the molecular weight was low, but substantially decreased as the fine particle fraction increased with molecular weight. The deposition velocity was generally higher at high wind speeds. However, increase in the deposition velocity in unstable atmospheric conditions was also observed for gaseous PAHs of intermediate molecular weight.

Effect Evaluation of Benzo[a]pyrene on Multiple Biomarkers in Common Carp (Cyprinus carpio) (잉어 (Cyprinus carpio)의 다중바이오마커를 이용한 Benzo[a]pyrene의 영향평가)

  • Kim, Woo-Keun;Kim, Ja-Hyun;Yeom, Dong-Hyuk;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • 수백여 종의 개별물질이 불완전 연소 혹은 유기물의 열분해로 인해 발생되는 다환방향족 탄화수소(PAHs)는 환경에서 중요한 오염원이 되고 있다. 본 연구는 다양한 바이오마커를 이용하여 수서생태계에 벤조피렌(benzo[a]pyrene)과 같은 다환방향족 탄화수소의 영향을 분석하였고, 이에 대한 통합적 결과 모델을 도출하였다. 즉, 잉어(Cyprinus carpio)를 이용하여 여러 농도의 벤조피렌(3, 12, $34{\mu}g/L$, 측정농도 기준)에 10일간 노출시킨 다음, DNA single-strand break, ethoxyresorufin-O-deethylase (EROD), acetylcholine esterase (AChE)와 vitellogenin (VTG)의 농도를 측정하였다. 벤조피렌은 잉어의 DNA 손상을 유도하였고, 낮은 농도에서 EROD와 VTC의 유의적인 활성을 보였으나, 신경전달물질과 관련이 깊은 AChE 효소활성에는 영향을 미치지 않았다. 이 결과를 star plot를 이용하여 통합 및 분석하였으며, 노출농도에 따른 통합 반응지수(integrated biomarker response value: IBR)로 나타내었다. 이런 다양한 바이오마커의 결과들은 벤조피렌에 대한 어류의 영향과 수생태 모니터링 자료로 이용 가능할 것으로 여겨지며, 통합반응지수는 생태위해성평가에서 유용한 도구로 쓰일 가치가 있는 것으로 평가된다.

Estimation of Dry Deposition Fluxes and Velocity for Particulate PAHs in Korea (입자상 PAHs의 건식 침적량과 건식 침적 속도 추정)

  • 이지이;배수야;이승묵;김용표
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.37-38
    • /
    • 2001
  • Polycyclic Aromatic Hydrocarbons(다환방향족 탄화수소류, 이하 PAHs)는 두 개 이상의 벤젠 고리로 구성되어 있는 반휘발성 유기물질로서 가스상과 입자상에 모두 존재한다. PAHs는 주로 불완전 연소에 의해서 생성되며, 주요 고정 오염원은 주거 난방, 코크 산업, 소각이고, 주요 이동오염원은 자동차 엔진이다. PAHs에는 강한 발암성 혹은 돌연변이원성을 가진 화합물들이 포함되어 있고, 주변 대기에 널리 분포되어 있을 가능성이 높기 때문에 일반 대중이 쉽게 노출될 수 있다. (중략)

  • PDF

Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay (고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성)

  • Park, Pan-Soo;Kim, Nam-Sook;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

  • PDF