• 제목/요약/키워드: 다칩모듈

검색결과 2건 처리시간 0.022초

냉각제들에 따른 불연속 발열체의 냉각성능 연구 (Study on the cooling performance of discrete heat sources using coolants)

  • 최민구;조금남
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.224-235
    • /
    • 1999
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water, PF-5060, and paraffin slurry. The experimental parameters were coolants including Paraffin slurry with mass fraction of 2.5~7.5%, heat flux of 10~40W/$\textrm{cm}^2$ for the simulated VLSI chips and Reynolds numbers of 3,000~20,000. The size of paraffin slurry was constant as 10~40${\mu}{\textrm}{m}$ before and after the experiment. The chip surface temperatures for paraffin slurry were lower than those for water and PF-5060. The local heat transfer coefficients for the paraffin slurry were larger than those for water and the local heat transfer coefficients reached a row-number-independent and thermally-fully-developed value approximately after the third row. The local Nusselt numbers for paraffin slurry with a mass fraction of 7.5% were larger by 20~38% than those for water. The paraffin slurry with a mass fraction of 5% shelved the best thermal and hydrodynamic characteristics when local heat transfer and pressure drop were considered simultaneously.

  • PDF

파라핀 슬러리를 사용한 다칩모듈의 냉각특성 (Cooling characteristics of the multichip module using paraffin slurry)

  • 조금남;최민구
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.