• Title/Summary/Keyword: 다축 하중

Search Result 47, Processing Time 0.026 seconds

Shear Strength Model for Slab-Column Connections (슬래브-기둥 접합부에 대한 전단강도모델)

  • Choi, Kyoung-Kyu;Park, Hong-Gun;Kim, Hye-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.585-593
    • /
    • 2010
  • On the basis of the strain-based shear strength model developed in the previous study, a strength model was developed to predict the direct punching shear capacity and unbalanced moment-carrying capacity of interior and exterior slab-column connections. Since the connections are severely damaged by flexural cracking, punching shear was assumed to be resisted mainly by the compression zone of the slab critical section. Considering the interaction with the compressive normal stress developed by the flexural moment, the shear strength of the compression zone was derived on the basis of the material failure criteria of concrete subjected to multiple stresses. As a result, shear capacity of the critical section was defined according to the degree of flexural damage. Since the exterior slab-column connections have unsymmertical critical sections, the unbalanced moment-carrying capacity was defined according to the direction of unbalanced moment. The proposed strength model was applied to existing test specimens. The results showed that the proposed method predicted the strengths of the test specimens better than current design methods.

A study on correlation between frictional coefficients and subjective evaluation while rubbing cosmetic product on skin (화장품을 바를 때 피부 마찰계수의 변화와 주관적인 평가와의 상관관계 연구)

  • Kwon Young-Ha;Kwon Hyun-Joon;Rang Moon-Jeong;Lee Su-Min
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • A frictional coefficients of in-vivo skin characteristic is the most important factor of the cutaneous mechanical properties ant the method of evaluating skin care in the fields of cosmetics products. In-vivo skin characteristic varies in many different ways depends on what is applied to the skin, loading condition, shape, surface roughness, and material of the probe. In this research, we designed a system which can be measured frictional coefficients of a human skin on real time. It consists of multi-components load-cell, actuator, linear motor and arm fixator. This measurement system was automatically controlled by computer. We measured frictional coefficients between probe an4 skin using this system ant inquired adjectives for subjective evaluation while rubbing cosmetic product on skin. Lastly, we analyzed correlation between two factors by calculating Pearson Correlation Coefficient. As a result, we could know that frictional coefficients varied from 0.17-1.2 according to cosmetic products, normal forte, materials and surface conditions of probe. We also confirmed sensual feelings of cosmetic products have close correlation with frictional coefficients.

  • PDF

Study on the Determination of Fatigue Damage Parameter for Rubber Component under Multiaxial Loading (다축하중이 작용하는 방진고무부품 피로손상 파라미터 결정에 관한 연구)

  • Moon, Seong-In;Woo, Chang-Su;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.194-200
    • /
    • 2012
  • Rubber components have been widely used in automotive industry as anti-vibration components for many years. These subjected to fluctuating loads, often fail due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop the durability analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. In order to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and strain energy density was proposed as the fatigue damage parameter for rubber components. The fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed.

Constitutional Classification between Tae-eumin and Soyangin Types by Measurement of the Friction Coefficient on the Skin of the Human Hand (손등 피부 마찰계수를 이용한 태음인과 소양인 간의 체질구별)

  • Song, Han-Wook;Park, Yon-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.52-61
    • /
    • 2010
  • The use of the friction coefficient is known to provide good discrimination ability in the classification of human constitutions, which are used in alternative medicine. In this study, a system that uses a multi-axis load cell and a hemi-circular probe is designed. The equipment consists of a sensor (load cell type, manufactured by the authors), an x-axis linear-bush guide motorized mobile stage that supports the hand being analyzed, and a signal conditioner. Using the proposed system, the friction coefficients from different constitutions were compared, and the relative repeatability error for the friction coefficient measurement was determined to be less than 2 %. The direction along the ring finger line was determined to be the optimum measurement region for a constitutional diagnosis between Tae-eumin and Soyangin types using the proposed system. There were some differences in the friction coefficient between the two constitutions, as reported in ancient literature. The proposed system is applicable to a quantitative constitutional diagnosis between Tae-eumin and Soyangin types within an acceptable level of uncertainty.

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

Mechanical Performance Study of Flexible Protection Tube for Submarine Cables (해저케이블용 유연보호튜브의 기계적 성능 연구)

  • Kyeong Soo Ahn;Yun Jae Kim;Jin-wook Choe;Jinseok Lim;Sung Woong Choi
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.101-107
    • /
    • 2024
  • Demand for submarine cable is increasing due to advances in submarine power transmission technology and submarine cable manufacturing technology. Submarine cable use various types of protective equipment to prevent problems such as high maintenance costs in the event of cable damage and power outages during maintenance periods. Among them, flexible protection tube is a representative protective equipment to protect cables and respond to external forces such as waves and current. The flexible protection tube is made of polyurethane 85A hyperelastic material, so the calculation of mechanical behavior is carried out using mechanical properties based on experimental results. In this study, a study was conducted to determine the bending performance and tensile performance of flexible protection tube through analytical methods. The physical properties obtained through the multiaxial tensile test of polyurethane 85A were used for the analysis. Bending and tensile performance were determined for the maximum bending moment standard of 15 kN·m and the tensile load standard of 50 kN. As a result, it was confirmed that when the maximum bending moment of 15 kN·m of the flexible protection tube occurred, the bending performance of the MBR was secured at 13 m and when a tensile load of 50 kN, it was applied the maximum vertical displacement was 968 mm, confirming that the tensile performance was secured.

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF