최근 컴퓨터와 인터넷 이용의 확산, 스마트폰을 포함한 스마트 기기의 보급과 소셜 네트워크 이용의 확대, 위치 기반의 다양한 서비스 확대 등으로 처리해야 할 데이터 크기가 증가하는 추세이다. 이에 따라 대용량 데이터에 대한 처리가 큰 이슈로 떠오르고 있다. 그로 인해 대용량 데이터 처리를 위한 큰 규모의 분산 컴퓨팅 환경을 지원하는 프레임워크인 하둡이 개발되었으며 많은 기업에서 이를 활용하고 있는 추세이다. 하지만 대용량 데이터 중 영상, 의료, 센서 데이터 등 다차원 데이터 처리에 관한 연구는 미비한 상태이다. 기존의 다차원 데이터 처리를 위해 다양한 다차원 인덱스가 제안되었지만, 대용량 다차원 데이터 처리는 단일머신에서는 비효율적인 단점이 있다. 본 논문에서는 다차원 인덱스 기법인 그리드 파일을 하둡의 분산 병렬 처리 모델인 맵리듀스를 기반으로 생성하는 기법을 제안한다. 또한 앞서 생성된 그리드 파일을 가지고 맵리듀스를 이용한 질의처리 방법을 제안 한다. 이로 인해 단일머신에서의 그리드 파일 생성을 병렬처리 함으로써 생성 시간을 단축시키고 질의 처리 또한 맵리듀스를 이용하여 병렬 처리 함으로써 질의 시간 단축을 예상한다.
멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 내용기반의 정보검색 기술과 다차원 다중 데이터큐브 구축기술을 통해 멀터미디어데이타의 마이닝을 구현하는 시스템에 대해 제안한다. 제안 시스템은 멀티미디어 데이터에 내용기반의 정보추출 시스템을 적용하여 성분백터를 추출하고 이를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이타베이스로부터 지식을 마이닝할 수 있도록 다차원 데이터큐브를 구축하여 빠른 데이터검색과 마이닝결과을 이용자에게 보여주는 모듈로 구성된다. 다차원 데이터큐브는 다중 어레이 구조로써 다차원 데이터를 저장하고, 저장된 여러 데이터 레벨 정보에서 가장 중요한 주제를 통합 생성하여 효율적으로 처리하므로 멀티미디어 데이터를 마이닝하는데 효과적인 방법이다. 또만 다차원데이타큐브를 다중으로 생성하는 방법은 데이터 마이닝 속도를 높이는데 효율적이다.
데이터 웨어하우스는 기업의 의사 결정을 지원하기 위해 기업의 운영 데이터베이스로부터 추출한 데이터의 집합으로써 OLAP 분석에 이용된다. OLAP은 데이터에 대한 다양한 분석을 위해 이들 데이터를 다차원 데이터 모델로 표현하고 이를 활용하여 복잡한 질의 처리 및 다차원 데이터 분석에 이용한다. 이러한 OLAP의 다차원 데이터를 관계형 데이터베이스에서 표현하기 위해 스타 스키마가 널리 사용된다. 지금까지의 데이터 웨어하우스는 일반적으로 ER 도형으로 설계된 소스 데이터로부터 스타 스키마를 설계하고 구축하였다. 하지만, 최근 인터넷의 급성장으로 인해 차세대 웹 문서의 표준인 XML을 통한 인터넷 상의 문서 전송 및 정보 교환이 활발해 지고 있으며, XML 문서에 대한 다차원적인 분석이 요구됨에 따라 데이터 웨어하우스는 XML 문서로부터의 스타 스키마 설계 및 저장이 필요하게 되었다. 따라서 본 논문에서는 XML DTD로부터 애트리뷰트 트리를 생성하여 스타 스키마를 설계하고 이 DTD를 따르는 XML 문서에서 스타 스키마의 인스턴스를 추출하여 관계형 데이터베이스에 저장하기 위한 XML2Star 알고리즘을 개발하였다. 이것을 통해 기업 및 사용자는 OLAP에서 XML 기반의 스타 스키마를 이용한 다차원적인 분석이 가능하게 된다.
다차원 색인 구조 중 대표적인 것은 R-tree에 기초한 색인으로써 공간 정보 등에 있어 강력한 성능을 보인다. 하지만 R-tree의 경우 차원의 수가 증가하거나 이용자 선호에 따라 부분 차원만을 이용하는 경우, 색인을 생성하는 시간이 크게 증가하고 생성된 색인의 효율성이 감소하는 문제를 갖고 있다. 따라서 지속적으로 차원이 증가하고 있는 최근의 다차원 데이터에는 해당 방법들은 적합하지 않다. 본 논문에서는 이런 문제를 해결하기 위해 해시 색인에 기반한 새로운 다차원 색인 구조인 다차원 해시 색인을 제안한다. 다차원 해시 색인은 해시 함수를 통해 데이터들을 유클리드 공간의 버킷들로 분류하여 색인을 생성하고 이후 탐색이 요청되었을 때 이용자 선호도에 따라 선택된 부분 차원의 공간을 탐색할 수 있는 해시 탐색 트리를 생성하여 효과적인 탐색을 수행한다. 실험 결과, 해당 기법은 R-tree와 비교하여 색인 생성에 있어 매우 큰 성능의 향상과 함께 탐색에서도 유사한 탐색 성능을 보이는 것을 확인할 수 있었다.
OLAP(On-Line Analytical Processing)은 데이터 웨어하우스 내의 방대한 양의 데이터에 대해 사용자와의 상호 작용이 가능하도록 질의에 대하여 빠른 응답성능을 보장해야 한다. 이를 위해 OLAP 시스템은 데이터에 대한 다량의 다차원 집계 연산을 수행해야 하기 때문에, 일반적으로 사전 연산 결과를 저장하여 직접적인 집계 연산을 줄임으로써 응답 성능을 놓이는 방법을 사용하고 있다 OLAP 다차원 데이터의 희박성은 이러한 사전 연산 시 데이터 폭발 현상을 일으켜 도리어 성능을 저하시키는 요인으로 작용할 수 있다. 본 논문에서는 데이터의 희박성과 성능 문제에 대해 고찰하고 OLAP 응용에서 발생할 수 있는 다차원 데이터의 희박성 패턴에 대해 정의하였다. 또한 정의된 패턴에 따라 희박 데이터를 생성하는 데이터 생성기를 구현하고 이를 이용하여 생성된 데이터를 기반으로 MS SQL Server Analysis Services와 Pilot DSS의 두 OLAP 제품의 성능을 평가하고 결과를 비교하였다.
본 논문은 다차원 문항반응이론 모델에 기반하여 시뮬레이션을 위한 피험자들의 문항 응답 데이터를 생성하는 알고리즘을 개발하는 것이 목적으로 하였다. 본 알고리즘은 시험지를 구성하고 있는 문항들의 모수를 읽고, 각각의 차원에 대해 피험자들의 능력 수준을 나타내는 정규 분포 확률 변수를 생성한다. 본 알고리즘은 다차원 문항반응이론 모델에 기반하여 피험자들이 각 문항에 대해 정답으로 응답할 확률을 계산한다. 피험자들의 문항 응답을 결정하는 균일 분포 난수와 비교한다. 만약 확률이 난수보다 크면 피험자는 올바른 답을 한 것으로 보고 그렇지 않을 경우 틀리게 답할 것으로 한다. 본 프로그램은 피험자 수, 문항 수를 조절할 수 있다. 본 알고리즘을 통해 교육 측정 분야에서 다차원 문항반응 이론을 이용하여 학습자들의 문항 응답 데이터를 이용한 시뮬레이션 연구에 기여할 수 있을 것으로 기대한다.
축적된 데이터를 기반으로 의사결정을 지원하는 데이터 웨어하우스에서 빠른 응답을 제공하기 위하여 데이터큐브 생성기법에 대한 많은 연구가 진행되었다. 대표적으로 다차원 배열을 사용한 기법과 hyper-tree를 기반으로 하는 H-cubing 기법이 연구되었다. 하지만 전자는 다차원 집계 연산에 필요한 모든 데이터를 배열로 저장하여 데이터의 양이 많아질수록 메모리 사용이 증가하였으며 후자는 hyper-tree를 기반으로 모든 튜플을 트리로 구축하여 트리 구축비용이 증가하였다. 본 논문에서는 데이터 웨어하우스에서 해쉬 테이블을 이용한 효율적인 데이터큐브 생성 기법을 제안한다. 제안 기법은 데이터큐브 생성 시 가중치 맵핑 테이블과 레코드 해쉬 테이블을 사용하여 다차원 데이터의 저장될 레코드 순서를 빠르게 찾아 저장한다. 따라서 데이터큐브의 생성속도가 향상되며 해쉬 테이블 만을 유지하여 메모리 사용량이 감소한다. 이는 성능평가를 통해 기존 기법보다 데이터의 빠른 검색과 데이터큐브 생성 요청에 빠른 응답을 보였다.
데이터 웨어하우스는 축적된 대량의 데이터를 분석하여 의사결정을 지원하는 시스템이다. 의사결정을 위한 대량의 데이터 분석은 많은 비용을 요구하므로, 질의 처리 성능을 높이고 의사 결정자에게 빠른 응답을 제공하는 효율적인 데이터 큐브 생성 기법이 연구되었다. 기존 기법으로는 Multiway Array 기법과 H-Cubing 기법이 있다. Multiway Array 기법은 다차원 집계 연산에 필요한 모든 데이터를 배열로 저장하는 것으로 데이터의 양이 많아질수록 메모리 사용이 증가한다. H-Cubing 기법은 Hyper-Tree를 기반으로 튜플을 트리로 구축하므로 모든 튜플을 트리로 구축해야 하는 비용이 증가한다. 본 논문에서는 데이터 웨어하우스에서 해쉬 테이블을 이용한 효율적인 데이터 큐브 생성 기법을 제안한다. 제안 기법은 데이터 큐브 생성 시 필드 해쉬 테이블과 레코드 해쉬 테이블을 사용한다. 필드 해쉬 테이블은 저장될 레코드 순서 계산을 위하여 각 필드에 대해 레벨 값을 해쉬 테이블로 관리한다. 레코드 해쉬 테이블은 데이터 큐브 테이블에 저장될 레코드의 순서와 데이터 큐브 테이블에 저장하기 위한 임시 레코드의 위치를 관리한다. 필드 해쉬 테이블을 이용하여 다차원 데이터의 저장될 레코드 순서를 빠르게 찾아 저장함으로서 데이터 큐브의 생성속도가 향상된다. 또한 해쉬 테이블 만을 유지하면 되므로 메모리 사용량이 감소한다. 따라서 해쉬 테이블의 사용으로 데이터의 빠른 검색과 데이터 큐브 생성 요청에 빠른 응답이 가능하다.
다차원 데이터를 배열에 저장하는 Multidimensional OLAP (MOLAP) 시스템은 배열내의 위치 정보를 통해 데이터를 신속하게 엑세스할 수 있는 장점을 갖는다. 그러나 실생활의 다차원 데이터는 대체로 희박하여 저장될 때 압축되고, 데이터가 검색될 때는 원래의 위치 정보를 찾기 위해 인덱스를 필요로 하게 된다. 다양한 종류의 다차원 인덱스가 테이블 형태의 데이터를 대상으로 개발되어 있으나, 이들은 데이터의 삽입과 삭제에 유연하게 대처할 수 있도록 하기 위해서 인덱스 공간과 데이터 검색 시간에 약간의 낭비를 초래한다. 본 연구에서는 OLAP 데이터가 주기적으로 갱신되며, 분석에 필요한 집계 데이터도 점진적으로 갱신되기보다 실제로는 새로 생성되고 있다는 점을 고려하여, 읽기 전용 MOLAP 데이터를 위한 인덱스 구조를 제안한다. 데이터는 청크들로 나뉜 후 압축 저장되며, 각 청크는 위치 정보를 유지하면서 비트로 표현되어 인덱스에 저장되도록 하였다. 제안한 비트맵 인덱스는 높은 압축률을 보이며, 범위 질의(range query)를 포함한 OLAP 주요 연산들 처리에 특히 효율적이다.
데이터 마이닝에서 연속패턴(sequential pattern) 생성기술은 시차를 두고 발생한 사건들에 대하여 잠재해있는 패턴을 발견하는 기술을 의미한다. 본 연구는 정보이론을 이용하여 데이터베이스로부터 연속패턴을 자동으로 발견하는 방법에 관한 내용이다. 기존의 방법들이 한 속성내에서의 연속패턴만을 탐지하는 일차원 연속패턴을 생성하는데 비하여 본 연구에서 제시하는 방법은 데이터베이스내의 모든 속성간의 연속패턴 관계를 탐지할 수 있는 다차원 연속패턴을 생성할 수 있다. 본 연구에서는 연속패턴 생성을 위하여 헬링거(Hellinger) 변량을 사용하였으며 이를 이용하여 발견된 연속패턴들의 중요도를 측정할 수 있었다. 또한 헬링거 변량의 함수적인 특성을 분석하여 연속패턴 추출의 복잡도를 줄이기 위한 두 가지의 법칙이 제안되었고 다수의 실험 데이터를 통하여 다차원의 연속패턴을 생성할 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.