• Title/Summary/Keyword: 다중 회귀

Search Result 3,981, Processing Time 0.032 seconds

The Effect of Online Learning Using Note-Taking on Academic Achievement (노트 필기를 사용한 온라인 학습이 학업성취도에 미치는 영향)

  • Yoon, Seok-Beom;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.333-339
    • /
    • 2022
  • In this study, we study the effects of note-taking skills on students' academic performance, satisfaction, and concentration, and immersiveness when students are taking online classes. The Cornell note format was used for the note-taking skills. The survey result shows that note-taking skills in online class increase students' diligence, participation, and concentration. We find a strong positive correlation between the number of Cornell note submission and academic performance, and we show that the association between two is a statistically significant by using simple/multiple regression analysis. The multiple regression result shows that one unit increase in the Cornell note submission is associated with the increase in 0.253 midterm score on average. In addition, one unit increase in the Cornell note submission is associated with increase in 0.287 final exam score on average. Further, we conduct bootstrapping regression as a robustness test and show that the results are consistent with the simple/multiple regression results. These analyses show that Cornell note taking skills in online classes can be beneficial for students to improve the quality of their learning.

Hate Speech Classification Using Ordinal Regression (순서형 회귀분석을 활용한 악성 댓글 분류)

  • Lee, Seyoung;Park, Saerom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.735-736
    • /
    • 2021
  • 인터넷에서 댓글 시스템은 자신의 의사표현을 위한 시스템으로 널리 사용되고 있다. 하지만 이를 악용하여 상대방에 대한 혐오를 드러내기도 한다. 악성댓글에 대한 적절한 대처를 위해 빠르고 정확한 탐지는 필수적이다. 본 연구에서는 악성 댓글 분류 문제를 해결하기 위해서 순서가 있는 분류 레이블의 성질을 활용한 순서형 회귀 (Ordinal regression) 기반의 분류 모델을 제안한다. 일반적인 분류 모형과는 달리 혐오 발언 정도에 따라 다중 레이블을 부여하여 학습을 진행하였다. 실험을 통해 Korean Hate Speech Dataset에 대해 LSTM기반의 모형의 출력층을 다르게 구성하여 순서형 회귀 기반의 모형들의 성능을 비교하였다. 결과적으로 예측 결과에 대한 조율이 가능한 순서형 회귀 모형이 일반적인 순서형 회귀 모형에 비해서 편향된 예측에 대해 추가적인 성능 향상을 보였다.

  • PDF

A Brief Empirical Verification Using Multiple Regression Analysis on the Measurement Results of Seaport Efficiency of AHP/DEA-AR (다중회귀분석을 이용한 AHP/DEA-AR 항만효율성 측정결과의 실증적 검증소고)

  • Park, Ro-kyung
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.73-87
    • /
    • 2016
  • The purpose of this study is to investigate the empirical results of Analytic Hierarchy Process/Data Envelopment Analysis-Assurance Region(AHP/DEA-AR) by using multiple regression analysis during the period of 2009-2012 with 5 inputs (number of gantry cranes, number of berth, berth length, terminal yard, and mean depth) and 2 outputs (container TEU, and number of direct calling shipping companies). Assurance Region(AR) is the most important tool to measure the efficiency of seaports, because individual seaports are characterized in terms of inputs and outputs. Traditional AHP and multiple regression analysis techniques have been used for measuring the AR. However, few previous studies exist in the field of seaport efficiency measurement. The main empirical results of this study are as follows. First, the efficiency ranking comparison between the two models (AHP/DEA-AR and multiple regression) using the Wilcoxon signed-rank test and Mann-Whitney signed-rank sum test were matched with the average level of 84.5 % and 96.3% respectively. When data for four years are used, the ratios of the significant probability are decreased to 61.4% and 92.5%. The policy implication of this study is that the policy planners of Korean port should introduce AHP/DEA-AR and multiple regression analysis when they measure the seaport efficiency and consider the port investment for enhancing the efficiency of inputs and outputs. The next study will deal with the subjects introducing the Fuzzy method, non-radial DEA, and the mixed analysis between AHP/DEA-AR and multiple regression analysis.

Logistic Regressions with Sensory Evaluation Data about Hanwoo Steer Beef (한우 거세우 고기 관능평가 데이터의 로지스틱 회귀분석)

  • Lee, Hye-Jung;Kim, Jae-Hee
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.857-870
    • /
    • 2010
  • This study was conducted to investigate the relationship between the socio-demographic factors and the Korean consumers palatability evaluation grades with Hanwoo sensory evaluation data from 2006 to 2008 by National Institute of Animal Science. The dichotomy logistic regression model and the multinomial logistic regression model are fitted with the independent variables such as the consumer living location, age, gender occupation, monthly income, beef cut and the the palatability grade as the categorical dependent variable and tenderness, 리avor and juiciness as the continuous dependent variable. Stepwise variable selection procedure is incorporated to find the final model and odds ratios are calculated to nd the associations between categories.

Study on abnormal behavior prediction models using flexible multi-level regression (유연성 다중 회귀 모델을 활용한 보행자 이상 행동 예측 모델 연구)

  • Jung, Yu Jin;Yoon, Yong Ik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the recently, violent crime and accidental crime has been generated continuously. Consequently, people anxiety has been heightened. The Closed Circuit Television (CCTV) has been used to ensure the security and evidence for the crimes. However, the video captured from CCTV has being used in the post-processing to apply to the evidence. In this paper, we propose a flexible multi-level models for estimating whether dangerous behavior and the environment and context for pedestrians. The situation analysis builds the knowledge for the pedestrians tracking. Finally, the decision step decides and notifies the threat situation when the behavior observed object is determined to abnormal behavior. Thereby, tracking the behavior of objects in a multi-region, it can be seen that the risk of the object behavior. It can be predicted by the behavior prediction of crime.

Development of Accident Forecasting Models in Freeway Tunnels using Multiple Linear Regression Analysis (다중선형 회귀분석을 이용한 고속도로 터널구간의 교통사고 예측모형 개발)

  • Park, Ju-Hwan;Kim, Sang-Gu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.145-154
    • /
    • 2012
  • This paper analyzed the characteristics of traffic accidents in all tunnels on nationwide freeways and selected some various independent variables related to accident occurrence in tunnels. The study aims to develop reliable accident forecasting models using the various dependent variables such as the number of accident (no.), no./km, and no./MVK. Finally, reliable multiple linear regression models were proposed in this paper. This study tested the validity verification of developed models through statistics such as $R^2$, F values, multicollinearity, residual analysis. The paper selected the accident forecasting models considering the characteristics of tunnel accidents and two models were finally proposed according to two groups of tunnel length. In the selected models, natural logarithm of ln(no./MVK) is used for the dependent variable and AADT, vertical slope, and tunnel hight are used for the independent variables. The reliability of two models was proved by the comparison analysis between field data and estimating data using RMSE and MAE. These models may be not only effective in evaluating tunnel safety under design and planning phases of tunnel but also useful to reduce traffic accidents in tunnels and to manage the traffic flow of tunnel.

Multi-Emotion Regression Model for Recognizing Inherent Emotions in Speech Data (음성 데이터의 내재된 감정인식을 위한 다중 감정 회귀 모델)

  • Moung Ho Yi;Myung Jin Lim;Ju Hyun Shin
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.81-88
    • /
    • 2023
  • Recently, communication through online is increasing due to the spread of non-face-to-face services due to COVID-19. In non-face-to-face situations, the other person's opinions and emotions are recognized through modalities such as text, speech, and images. Currently, research on multimodal emotion recognition that combines various modalities is actively underway. Among them, emotion recognition using speech data is attracting attention as a means of understanding emotions through sound and language information, but most of the time, emotions are recognized using a single speech feature value. However, because a variety of emotions exist in a complex manner in a conversation, a method for recognizing multiple emotions is needed. Therefore, in this paper, we propose a multi-emotion regression model that extracts feature vectors after preprocessing speech data to recognize complex, inherent emotions and takes into account the passage of time.

Hadi와 Simonoff의 다중이상점 식별방법의 개선과 여러 다중이상점 식별방법의 효율성 비교

  • 유종영;김현철
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.11-23
    • /
    • 1996
  • 본 연구에서는 선형회귀분석에서 Hadi와 Simonoff의 다중이상점 식별방법을 수정하여 새로운 알고리즘을 제시하였다. Hadi와 Simonoff의 알고리즘 첫 단계에서 이상점일 가능성이 없는 점들의 집합을 추출할 때 가장효과와 편승효과에 영향을 받을 수 있음으로, 이 첫 단계를 수정하였다. 우리는 잔차가 일정한 분산을 갖는 정규분포에 다르다는 가정하에서 잔차의 신뢰구간을 생각하고, 이 구간안에서 잔차의 MAD가 최소인 새로운 모형을 탐색하고, 이를 이상점일 가능성이 없는 점들의 집합을 추출하는데 일용하는 새로운 알로리즘을 제시하였다. 제시된 방법은 실제자료에서 다른 방법에 비해 효율적으로 이상점을 식별할 수 있었다.

  • PDF