• Title/Summary/Keyword: 다중 필터

Search Result 769, Processing Time 0.027 seconds

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.

Immersive Smart Balance Board with Multiple Feedback (다중 피드백을 지원하는 몰입형 스마트 밸런스 보드)

  • Seung-Yong Lee;Seonho Lee;Junesung Park;Min-Chul Shin;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.171-178
    • /
    • 2024
  • Exercises using a Balance Board (BB) are effective in developing balance, strengthening core muscles, and improving physical fitness and concentration. In particular, the Smart Balance Board (SBB), which integrates with various digital content, provides appropriate feedback compared to traditional balance boards, maximizing the effectiveness of the exercise. However, most systems only offer visual and auditory feedback, failing to evaluate the impact on user engagement, interest, and the accuracy of exercise postures. This study proposes an Immersive Smart Balance Board (I-SBB) that utilizes multiple sensors to enable training with various feedback mechanisms and precise postures. The proposed system, based on Arduino, consists of a gyro sensor for measuring the board's posture, a communication module for wired/wireless communication, an infrared sensor to guide the user's foot placement, and a vibration motor for tactile feedback. The board's posture measurements are smoothly corrected using a Kalman Filter, and the multi-sensor data is processed in real-time using FreeRTOS. The proposed I-SBB is shown to be effective in enhancing user concentration and engagement, as well as generating interest, by integrating with diverse content.

Identification of the Environmentally Problematic Input/Environmental Emissions and Selection of the Optimum End-of-pipe Treatment Technologies of the Cement Manufacturing Process (시멘트 제조공정의 환경적 취약 투입물/환경오염물 파악 및 최적종말처리 공정 선정)

  • Lee, Joo-Young;Kim, Yoon-Ha;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.449-455
    • /
    • 2017
  • Process input data including material and energy, process output data including product, co-product and its environmental emissions of the reference and target processes were collected and analyzed to evaluate the process performance. Environmentally problematic input/environmental emissions of the manufacturing processes were identified using these data. Significant process inputs contributing to each of the environmental emissions were identified using multiple regression analysis between the process inputs and environmental emissions. Optimum combination of the end-of-pipe technologies for treating the environmental emissions considering economic aspects was made using the linear programming technique. The cement manufacturing processes in Korea and the EU producing same type of cement were chosen for the case study. Environmentally problematic input/environmental emissions of the domestic cement manufacturing processes include coal, dust, and $SO_x$. Multiple regression analysis among the process inputs and environmental emissions revealed that $CO_2$ emission was influenced most by coal, followed by the input raw materials and gypsum. $SO_x$ emission was influenced by coal, and dust emission by gypsum followed by raw material. Optimization of the end-of-pipe technologies treating dust showed that a combination of 100% of the electro precipitator and 2.4% of the fiber filter gives the lowest cost. The $SO_x$ case showed that a combination of 100% of the dry addition process and 25.88% of the wet scrubber gives the lowest cost. Salient feature of this research is that it proposed a method for identifying environmentally problematic input/environmental emissions of the manufacturing processes, in particular, cement manufacturing process. Another feature is that it showed a method for selecting the optimum combination of the end-of-pipe treatment technologies.

Application of Hyperspectral Imagery to Decision Tree Classifier for Assessment of Spring Potato (Solanum tuberosum) Damage by Salinity and Drought (초분광 영상을 이용한 의사결정 트리 기반 봄감자(Solanum tuberosum)의 염해 판별)

  • Kang, Kyeong-Suk;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Lee, Su Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.317-326
    • /
    • 2019
  • Salinity which is often detected on reclaimed land is a major detrimental factor to crop growth. It would be advantageous to develop an approach for assessment of salinity and drought damages using a non-destructive method in a large landfills area. The objective of this study was to examine applicability of the decision tree classifier using imagery for classifying for spring potatoes (Solanum tuberosum) damaged by salinity or drought at vegetation growth stages. We focused on comparing the accuracies of OA (Overall accuracy) and KC (Kappa coefficient) between the simple reflectance and the band ratios minimizing the effect on the light unevenness. Spectral merging based on the commercial band width with full width at half maximum (FWHM) such as 10 nm, 25 nm, and 50 nm was also considered to invent the multispectral image sensor. In the case of the classification based on original simple reflectance with 5 nm of FWHM, the selected bands ranged from 3-13 bands with the accuracy of less than 66.7% of OA and 40.8% of KC in all FWHMs. The maximum values of OA and KC values were 78.7% and 57.7%, respectively, with 10 nm of FWHM to classify salinity and drought damages of spring potato. When the classifier was built based on the band ratios, the accuracy was more than 95% of OA and KC regardless of growth stages and FWHMs. If the multispectral image sensor is made with the six bands (the ratios of three bands) with 10 nm of FWHM, it is possible to classify the damaged spring potato by salinity or drought using the reflectance of images with 91.3% of OA and 85.0% of KC.

High-resolution shallow marine seismic survey using an air gun and 6 channel streamer (에어건과 6채널 스트리머를 이용한 고해상 천부 해저 탄성파탐사)

  • Lee Ho-Young;Park Keun-Pil;Koo Nam-Hyung;Park Young-Soo;Kim Young-Gun;Seo Gab-Seok;Kang Dong-Hyo;Hwang Kyu-Duk;Kim Jong-Chon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.24-45
    • /
    • 2002
  • For the last several decades, high-resolution shallow marine seismic technique has been used for various resources, engineering and geological surveys. Even though the multichannel method is powerful to image subsurface structures, single channel analog survey has been more frequently employed in shallow water exploration, because it is more expedient and economical. To improve the quality of the high-resolution seismic data economically, we acquired digital seismic data using a small air gun, 6 channel streamer and PC-based system, performed data processing and produced high-resolution seismic sections. For many years, such test acquisitions were performed with other studies which have different purposes in the area of off Pohang, Yellow Sea and Gyeonggi-bay. Basic data processing was applied to the acquired data and the processing sequence included gain recovery, deconvolution, filtering, normal moveout, static corrections, CMP gathering and stacking. Examples of digitally processed sections were shown and compared with analog sections. Digital seismic sections have a much higher resolution after data processing. The results of acquisition and processing show that the high-resolution shallow marine seismic surveys using a small air gun, 6 channel streamer and PC-based system may be an effective way to image shallow subsurface structures precisely.

  • PDF

Development of Prediction Model for the Na Content of Leaves of Spring Potatoes Using Hyperspectral Imagery (초분광 영상을 이용한 봄감자의 잎 Na 함량 예측 모델 개발)

  • Park, Jun-Woo;Kang, Ye-Seong;Ryu, Chan-Seok;Jang, Si-Hyeong;Kang, Kyung-Suk;Kim, Tae-Yang;Park, Min-Jun;Baek, Hyeon-Chan;Song, Hye-Young;Jun, Sae-Rom;Lee, Su-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.316-328
    • /
    • 2021
  • In this study, the leaf Na content prediction model for spring potato was established using 400-1000 nm hyperspectral sensor to develop the multispectral sensor for the salinity monitoring in reclaimed land. The irrigation conditions were standard, drought, and salinity (2, 4, 8 dS/m), and the irrigation amount was calculated based on the amount of evaporation. The leaves' Na contents were measured 1st and 2nd weeks after starting irrigation in the vegetative, tuber formative, and tuber growing periods, respectively. The reflectance of the leaves was converted from 5 nm to 10 nm, 25 nm, and 50 nm of FWHM (full width at half maximum) based on the 10 nm wavelength intervals. Using the variance importance in projections of partial least square regression(PLSR-VIP), ten band ratios were selected as the variables to predict salinity damage levels with Na content of spring potato leaves. The MLR(Multiple linear regression) models were estimated by removing the band ratios one by one in the order of the lowest weight among the ten band ratios. The performance of models was compared by not only R2, MAPE but also the number of band ratios, optimal FWHM to develop the compact multispectral sensor. It was an advantage to use 25 nm of FWHM to predict the amount of Na in leaves for spring potatoes during the 1st and 2nd weeks vegetative and tuber formative periods and 2 weeks tuber growing periods. The selected bandpass filters were 15 bands and mainly in red and red-edge regions such as 430/440, 490/500, 500/510, 550/560, 570/580, 590/600, 640/650, 650/660, 670/680, 680/690, 690/700, 700/710, 710/720, 720/730, 730/740 nm.

Evaluation to Obtain the Image According to the Spatial Domain Filtering of Various Convolution Kernels in the Multi-Detector Row Computed Tomography (MDCT에서의 Convolution Kernel 종류에 따른 공간 영역 필터링의 영상 평가)

  • Lee, Hoo-Min;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.71-81
    • /
    • 2008
  • Our objective was to evaluate the image of spatial domain filtering as an alternative to additional image reconstruction using different kernels in MDCT. Derived from thin collimated source images were generated using water phantom and abdomen B10(very smooth), B20(smooth), B30(medium smooth), B40 (medium), B50(medium sharp), B60(sharp), B70(very sharp) and B80(ultra sharp) kernels. MTF and spatial resolution measured with various convolution kernels. Quantitative CT attenuation coefficient and noise measurements provided comparable HU(Hounsfield) units in this respect. CT attenuation coefficient(mean HU) values in the water were values in the water were $1.1{\sim}1.8\;HU$, air($-998{\sim}-1000\;HU$) and noise in the water($5.4{\sim}44.8\;HU$), air($3.6{\sim}31.4\;HU$). In the abdominal fat a CT attenuation coefficient($-2.2{\sim}0.8\;HU$) and noise($10.1{\sim}82.4\;HU$) was measured. In the abdominal was CT attenuation coefficient($53.3{\sim}54.3\;HU$) and noise($10.4{\sim}70.7\;HU$) in the muscle and in the liver parenchyma of CT attenuation coefficient($60.4{\sim}62.2\;HU$) and noise ($7.6{\sim}63.8\;HU$) in the liver parenchyma. Image reconstructed with a convolution kernel led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image scanned with a high convolution kernel(B80) led to an increase in noise, whereas the results for CT attenuation coefficient were comparable. Image medications of image sharpness and noise eliminate the need for reconstruction using different kernels in the future. Adjusting CT various kernels, which should be adjusted to take into account the kernels of the CT undergoing the examination, may control CT images increase the diagnostic accuracy.

  • PDF

Interactive analysis tools for the wide-angle seismic data for crustal structure study (Technical Report) (지각 구조 연구에서 광각 탄성파 자료를 위한 대화식 분석 방법들)

  • Fujie, Gou;Kasahara, Junzo;Murase, Kei;Mochizuki, Kimihiro;Kaneda, Yoshiyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.26-33
    • /
    • 2008
  • The analysis of wide-angle seismic reflection and refraction data plays an important role in lithospheric-scale crustal structure study. However, it is extremely difficult to develop an appropriate velocity structure model directly from the observed data, and we have to improve the structure model step by step, because the crustal structure analysis is an intrinsically non-linear problem. There are several subjective processes in wide-angle crustal structure modelling, such as phase identification and trial-and-error forward modelling. Because these subjective processes in wide-angle data analysis reduce the uniqueness and credibility of the resultant models, it is important to reduce subjectivity in the analysis procedure. From this point of view, we describe two software tools, PASTEUP and MODELING, to be used for developing crustal structure models. PASTEUP is an interactive application that facilitates the plotting of record sections, analysis of wide-angle seismic data, and picking of phases. PASTEUP is equipped with various filters and analysis functions to enhance signal-to-noise ratio and to help phase identification. MODELING is an interactive application for editing velocity models, and ray-tracing. Synthetic traveltimes computed by the MODELING application can be directly compared with the observed waveforms in the PASTEUP application. This reduces subjectivity in crustal structure modelling because traveltime picking, which is one of the most subjective process in the crustal structure analysis, is not required. MODELING can convert an editable layered structure model into two-way traveltimes which can be compared with time-sections of Multi Channel Seismic (MCS) reflection data. Direct comparison between the structure model of wide-angle data with the reflection data will give the model more credibility. In addition, both PASTEUP and MODELING are efficient tools for handling a large dataset. These software tools help us develop more plausible lithospheric-scale structure models using wide-angle seismic data.

Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration (정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법)

  • Kim, Kyoung-Soo;Lee, Jin-Hak;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.1-12
    • /
    • 2005
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. This paper presents a new algorithm for robust registration of the images acquired by multiple sensors having different modalities; the EO (electro-optic) and IR(infrared) ones in the paper. The two feature-based and intensity-based approaches are usually possible for image registration. In the former selection of accurate common features is crucial for high performance, but features in the EO image are often not the same as those in the R image. Hence, this approach is inadequate to register the E0/IR images. In the latter normalized mutual Information (nHr) has been widely used as a similarity measure due to its high accuracy and robustness, and NMI-based image registration methods assume that statistical correlation between two images should be global. Unfortunately, since we find out that EO and IR images don't often satisfy this assumption, registration accuracy is not high enough to apply to some applications. In this paper, we propose a two-stage NMI-based registration method based on the analysis of statistical correlation between E0/1R images. In the first stage, for robust registration, we propose two preprocessing schemes: extraction of statistically correlated regions (ESCR) and enhancement of statistical correlation by filtering (ESCF). For each image, ESCR automatically extracts the regions that are highly correlated to the corresponding regions in the other image. And ESCF adaptively filters out each image to enhance statistical correlation between them. In the second stage, two output images are registered by using NMI-based algorithm. The proposed method provides prospective results for various E0/1R sensor image pairs in terms of accuracy, robustness, and speed.