• Title/Summary/Keyword: 다중 패턴 분류

Search Result 107, Processing Time 0.025 seconds

Multi-pattern Classification Using Kernel Bagging-based Import Vector Machine (커널 Bagging기반의 Import Vector Machine을 이용한 다중 패턴 분류)

  • 최준혁;김대수;임기욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.275-278
    • /
    • 2002
  • Vapnik이 제안한 Support Vector Machine은 두 개의 부류를 갖는 데이터에 대한 분류에는 매우 좋은 성능을 보인다는 점은 이미 잘 알려져 있다. 하지만 부류의 개수가 3개 이상인 다중 패턴을 갖는 데이터에 대한 분류에는 SVM을 적용하기가 쉽지 않다. Support Vector Machine의 이러한 문제점을 해결하기 위하여 Zhu는 3개 이상의 부류를 갖는 데이터의 패턴 분류를 위하여 Import Vector Machine을 제안하였다. 이 모형은 Support Vector Machine을 이용하여 해결하기 어려운 다중 패턴 분류를 가능케 한다. Import Vector Machine은 커널 로지스틱 기반의 함수만을 사용하지만 본 논문에서는 다수의 커널 함수를 적용하여 가장 성능이 우수한 커널 함수를 찾아내어 최종 분류를 수행하게되는 bagging 기법을 적용하였다 제안하는 방법이 기존의 방법에 비해, 더욱 정확한 분류를 수행함을 실험 결과를 통해 확인한다.

Multiple SVM Classifier for Pattern Classification in Data Mining (데이터 마이닝에서 패턴 분류를 위한 다중 SVM 분류기)

  • Kim Man-Sun;Lee Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • Pattern classification extracts various types of pattern information expressing objects in the real world and decides their class. The top priority of pattern classification technologies is to improve the performance of classification and, for this, many researches have tried various approaches for the last 40 years. Classification methods used in pattern classification include base classifier based on the probabilistic inference of patterns, decision tree, method based on distance function, neural network and clustering but they are not efficient in analyzing a large amount of multi-dimensional data. Thus, there are active researches on multiple classifier systems, which improve the performance of classification by combining problems using a number of mutually compensatory classifiers. The present study identifies problems in previous researches on multiple SVM classifiers, and proposes BORSE, a model that, based on 1:M policy in order to expand SVM to a multiple class classifier, regards each SVM output as a signal with non-linear pattern, trains the neural network for the pattern and combine the final results of classification performance.

Import Vector Voting Model for Multi-pattern Classification (다중 패턴 분류를 위한 Import Vector Voting 모델)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.655-660
    • /
    • 2003
  • In general, Support Vector Machine has a good performance in binary classification, but it has the limitation on multi-pattern classification. So, we proposed an Import Vector Voting model for two or more labels classification. This model applied kernel bagging strategy to Import Vector Machine by Zhu. The proposed model used a voting strategy which averaged optimal kernel function from many kernel functions. In experiments, not only binary but multi-pattern classification problems, our proposed Import Vector Voting model showed good performance for given machine learning data.

Multiple Attractor CA Based Pattern Classifier (다중 끌개를 갖는 셀룰라 오토마타를 이용한 패턴 분류기 생성)

  • Hwang, Yoon-Hee;Cho, Sung-Jin;Choi, Un-Sook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.315-320
    • /
    • 2010
  • Classifying multi-class pattern plays an important role in grouping of records in database systems, detection of faults in the VLSI circuits and so on. In this paper, we propose an algorithm for the construction of multi-class pattern classifier with minimum memory capacity using MACA(Multiple Attractor Cellular Automata) and the subspace concept for given multi-class patterns.

A Study on Comfortableness Classification using Multi-channel EEG and Neural Network (다중채널 뇌파와 신경회로망을 이용한 쾌적성 분류에 관한 연구)

  • 김흥환;이상한;강동기;김동준;고한우
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.215-220
    • /
    • 2002
  • 본 연구에서는 다중채널 뇌파에서 특징 파라미터로 선형 예측기 계수(Linear predictor coefficients)를 추출하고, 패턴인식기로는 신경회로망을 이용한 쾌적성 분류 알고리즘을 개발하여 다중 템플릿 방법으로 쾌적성 분류 실험을 하고자 하였다. 뇌파 데이터는 대학생 10명으로부터 쾌적한 환경과 불쾌적한 환경에서의 데이터를 수집하였으며, 전극 위치는 Fpl, Fp2, F3, F4, T3, T4, P3, P4, O1, O2를 사용하였다. 수집된 뇌파는 전처리를 거친 후 특징 파라미터를 추출하고 패턴 분류기로 사용된 신경회로망의 입력으로 사용하였다. 쾌적성 분류 방법은 다중템플릿 방법으로 여러 명의 피검자를 각각 학습시켜 이로부터 생성되는 신경회로망의 가중치들을 템플릿에 저장한다. 그리고 테스트를 할 때에는 먼저 처음의 안정 상태의 뇌파를 이용하여 템플릿 검색을 하고 가장 가까운 템플릿을 선택한다. 그리고 선택된 템플릿을 이용하여 다른 감정에 대한 쾌적성 분류 실험을 하게 된다. 쾌적성 분류 실험 결과 평균 인식률이 약 75%의 성능을 나타내었다.

  • PDF

Multiple Feature Representation for Efficient Cascaded Face Detection (효과적인 계단식 얼굴 검출을 위한 다중 특징 추출)

  • 소형준;남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

Performance Evaluation of Various Normalization Methods and Score-level Fusion Algorithms for Multiple-Biometric System (다중 생체 인식 시스템을 위한 정규화함수와 결합알고리즘의 성능 평가)

  • Woo Na-Young;Kim Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.115-127
    • /
    • 2006
  • The purpose of this paper is evaluation of various normalization methods and fusion algorithms in addition to pattern classification algorithms for multi-biometric systems. Experiments are performed using various normalization functions, fusion algorithms and pattern classification algorithms based on Biometric Scores Set-Releasel(BSSR1) provided by NIST. The performance results are presented by Half Total Error Rate (WTER). This study gives base data for the study on performance enhancement of multiple-biometric system by showing performance results using single database and metrics.

A Multiple SVM Classifier Combined With Neural Networks (신경망을 결합한 다중 SVM 분류기)

  • 고재필;김승태;김은주;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF

A research on Bayesian inference model of human emotion (베이지안 이론을 이용한 감성 추론 모델에 관한 연구)

  • Kim, Ji-Hye;Hwang, Min-Cheol;Kim, Jong-Hwa;U, Jin-Cheol;Kim, Chi-Jung;Kim, Yong-U
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.95-98
    • /
    • 2009
  • 본 연구는 주관 감성에 따른 생리 데이터의 패턴을 분류하고, 임의의 생리 데이터의 패턴을 확인하여 각성-이완, 쾌-불쾌의 감성을 추론하기 위해 베이지안 이론(Bayesian learning)을 기반으로 한 추론 모델을 제안하는 것이 목적이다. 본 연구에서 제안하는 모델은 학습데이터를 분류하여 사전확률을 도출하는 학습 단계와 사후확률로 임의의 생리 데이터의 패턴을 분류하여 감성을 추론하는 추론 단계로 이루어진다. 자율 신경계 생리변수(PPG, GSR, SKT) 각각의 패턴 분류를 위해 1~7로 정규화를 시킨 후 선형 관계를 구하여 분류된 패턴의 사전확률을 구하였다. 다음으로 임의의 사전 확률 분포에 대한 사후 확률 분포의 계산을 위해 베이지안 이론을 적용하였다. 본 연구를 통해 주관적 평가를 실시하지 않고 다중 생리변수 인식을 통해 감성을 추론 할 수 있는 모델을 제안하였다.

  • PDF

Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks (차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계)

  • Kim, Wook-Dong;Ma, Chang-Min;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF