This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.793-795
/
2004
본 논문에서는 웨이블릿 변환과 Direct LDA(DLDA)을 사용한 홍채 특징추출 방법을 제안한다. 이것은 획득한 홍채 영상으로부터 독특한 특징을 추출하기 위해 특별히 이차원 이산 웨이블릿 변환의 다중해상도 분해 방법을 사용하는 것이다 또한 홍채의 다양한 웨이블릿 성분으로부터 변별력을 가진 특징을 얻을 수 있도록 DLDA 기법을 적용하였다. 이러한 특징추출 방법은 이동이나 회전에 변하지 않는 알고리즘을 요구하는 홍채의 모양을 묘사하는데 적합하다. 홍채의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였다. 본 논문에서 인간의 홍채인식을 위해 제시한 방법이 홍채패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.237-240
/
2000
본 논문에서는 원격탐사 이미지 데이터의 분석과정중의 하나인 이미지의 분류를 위해서 적용되는 다중분광 영상에서 특징 추출을 위한 효율적인 방법을 제안한다. 즉, 웨이브렛 변환을 이용하여 위성탐사 이미지 데이터의 특성을 분석하여 실제 이미지 분류에 기여도가 높은 특징을 추출하는 방법을 제안하였다. 효과적인 특징을 추출하기 위하여 이미지 데이터의 텍스쳐 특징을 이용하였다.
Journal of the Korea Society of Computer and Information
/
v.28
no.4
/
pp.41-51
/
2023
In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.
본 논문에서는 다중필터와 복합형 신경망으로 구성된 얼굴 검출 시스템과 WFMM 신경망을 이용한 피부색 검출기법을 소개한다. 전처리 단계에 해당하는 다중필터는 대상 영역의 수를 감소 시켜 시스템의 속도를 개선한다. 다중필터에 속한 색상필터는 총 11 가지의 색상 공간에서 피부색의 특징 값을 추출하여 학습 데이터로 사용하며, 이 학습 데이터에 의해 생성된 하이퍼 박스를 통해 피부색을 분류한다. 또한 WFMM 신경망의 연관도 요소 특성을 이용하여 각 색상 공간의 상대적 중요도를 분석하여 피부색 검출에 유용한 색상 공간을 분석하고 추출 한다. 얼굴패턴 검출을 위한 복합형 신경망은 첫 단계에서 가보 변환을 사용하는 CNN 을 통해 특징 지도를 생성하고, WFMM 신경망으로 최종 얼굴패턴을 검증한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.299-301
/
2005
본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.273-274
/
2016
본 논문에서는 다중 랜덤 워커(multiple random walkers)에 기반한 객체 추적 기법을 제안한다. 우선 서포트 벡터 머신(support vector machine)을 이용한 분류기 기반 객체 추적 기법을 소개한다. 다음으로 영상의 영역에 대한 특징 벡터 중 배경으로부터 추출된 특징 벡터를 억제하는 기법을 제안한다. 영역에서 배경 요소를 찾기 위해 다중 랜덤 워커를 이용한 전경 및 배경 추출 방법을 제시한다. 배경 요소를 억제하여 학습된 서포트 벡터 머신은 객체와 배경이 유사한 영상, 객체가 다른 물체에 의해 가려지는 영상 등에서 객체와 배경을 확실하게 구분하여 객체를 잃지 않고 추적할 수 있다. 마지막으로 실험을 통해 제안하는 기법이 기존 기법에 비해 우수한 추적 성능을 보임을 확인한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2007.06a
/
pp.149-152
/
2007
비전 연구에 있어서 객체 추적은 무엇보다도 중요시 되어 왔다. 특히 비디오 감시 시스템에서의 객체 추적은 매우 중요하다. 본 논문에서는 영상 내에서 움직이는 객체를 추출하고 객체내의 다중 후보블록의 통계적 특징을 이용한 추적 시스템을 구성하였다. 객체를 추적하기 위해서는 먼저 움직이는 객체 추출이 선행되어야 한다. 객체 추출은 영상 내에서 배경 프레임과 매 프레임에서의 현재 프레임간의 차 연산에 의한 가중치를 이용하여 객체의 움직임을 판단하고 추출하였다. 움직이는 객체는 본 논문에서 제안한 다중 후보 블록 알고리즘을 수행하여 추적에 필요한 통계 값을 획득한다. 통계 값으로는 방향성에 필요한 블록의 중심 좌표 값과 객체추적에 필요한 객체간의 매칭 정도를 사용하였다. 본 논문에서 제안한 추적 시스템은 민감한 빛의 변화에도 강건하였으며, 특정 블록에 대해서만 연산 수행을 수행하므로 컴퓨터의 연산을 줄여 실시간 추적도 가능하다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.501-504
/
2007
본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.
본 논문에서는 사람의 얼굴과 지문을 이용하여 실시간 다중 생체인식 시스템 구현을 제안하였다. 얼굴인식에서는 이미지의 크기를 축소하기 위해 Wavelet Transform을 이용하였으며, 특징 값을 찾아내기 위한 방법으로는 얼굴인식에서 많이 사용되는 LDA(Linear Discriminant Analysis)를 이용하였다. 또한, 지문인식에서는 지문의 중심점을 찾아 가버 변환을 하고, 이로부터 섹터별 변량을 특징 값으로 사용하였으며, 인식 성능을 향상시킬 수 있는 상관도가 높은 지문 3개를 기준 데이터로 등록하였다. 마지막 단계로 두 가지의 생체정보를 모두 사용할 수 있도록 퍼지를 이용하여 얼굴인식의 결과와 지문인식의 결과를 융합하였으며, 단일 생체정보를 이용했을 때의 단점을 다중 생체인식 시스템을 구현함으로서 우수한 성능을 보이는 시스템을 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.