• Title/Summary/Keyword: 다중 특징

Search Result 1,192, Processing Time 0.032 seconds

Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes (SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석)

  • Park, No-Wook;Chi, Kwang-Hoon;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • This paper analyzed relationships between various features from SAR data with multiple acquisition dates and mode (frequency, polarization and incidence angles), and land-cover classes. Two typical types of features were extracted by considering acquisition conditions of currently available SAR data. First, coherence, temporal variability and principal component transform-based features were extracted from multi-temporal and single mode SAR data. C-band ERS-1/2, ENVISAT ASAR and Radarsat-1, and L-band JERS-1 SAR data were used for those features and different characteristics of different SAR sensor data were discussed in terms of land-cover discrimination capability. Overall, tandem coherence showed the best discrimination capability among various features. Long-term coherence from C-band SAR data provided a useful information on the discrimination of urban areas from other classes. Paddy fields showed the highest temporal variability values in all SAR sensor data. Features from principal component transform contained particular information relevant to specific land-cover class. As features for multiple mode SAR data acquired at similar dates, polarization ratio and multi-channel variability were also considered. VH/VV polarization ratio was a useful feature for the discrimination of forest and dry fields in which the distributions of coherence and temporal variability were significantly overlapped. It would be expected that the case study results could be useful information on improvement of classification accuracy in land-cover classification with SAR data, provided that the main findings of this paper would be confirmed by extensive case studies based on multi-temporal SAR data with various modes and ground-based SAR experiments.

Robust Feature Extract ion Methods for Iris Recognition (홍채인식을 위한 강건한 특징추출 방법)

  • 김기진;손병준;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.793-795
    • /
    • 2004
  • 본 논문에서는 웨이블릿 변환과 Direct LDA(DLDA)을 사용한 홍채 특징추출 방법을 제안한다. 이것은 획득한 홍채 영상으로부터 독특한 특징을 추출하기 위해 특별히 이차원 이산 웨이블릿 변환의 다중해상도 분해 방법을 사용하는 것이다 또한 홍채의 다양한 웨이블릿 성분으로부터 변별력을 가진 특징을 얻을 수 있도록 DLDA 기법을 적용하였다. 이러한 특징추출 방법은 이동이나 회전에 변하지 않는 알고리즘을 요구하는 홍채의 모양을 묘사하는데 적합하다. 홍채의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였다. 본 논문에서 인간의 홍채인식을 위해 제시한 방법이 홍채패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.

  • PDF

A Study on the Feature Extraction using the Wavelet Transform in Satellite Remote Sensing Image (웨이브렛 변환을 이용한 원격탐사 이미지 데이터의 특징 추출에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.237-240
    • /
    • 2000
  • 본 논문에서는 원격탐사 이미지 데이터의 분석과정중의 하나인 이미지의 분류를 위해서 적용되는 다중분광 영상에서 특징 추출을 위한 효율적인 방법을 제안한다. 즉, 웨이브렛 변환을 이용하여 위성탐사 이미지 데이터의 특성을 분석하여 실제 이미지 분류에 기여도가 높은 특징을 추출하는 방법을 제안하였다. 효과적인 특징을 추출하기 위하여 이미지 데이터의 텍스쳐 특징을 이용하였다.

  • PDF

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

WFMM Neural Networks Based Skin Color Filter for Face Detection (얼굴패턴 검출 문제에서 WFMM 신경망 기반의 피부색 검출 기법)

  • Cho Il-Gook;Kim Ho-Joon
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.299-302
    • /
    • 2006
  • 본 논문에서는 다중필터와 복합형 신경망으로 구성된 얼굴 검출 시스템과 WFMM 신경망을 이용한 피부색 검출기법을 소개한다. 전처리 단계에 해당하는 다중필터는 대상 영역의 수를 감소 시켜 시스템의 속도를 개선한다. 다중필터에 속한 색상필터는 총 11 가지의 색상 공간에서 피부색의 특징 값을 추출하여 학습 데이터로 사용하며, 이 학습 데이터에 의해 생성된 하이퍼 박스를 통해 피부색을 분류한다. 또한 WFMM 신경망의 연관도 요소 특성을 이용하여 각 색상 공간의 상대적 중요도를 분석하여 피부색 검출에 유용한 색상 공간을 분석하고 추출 한다. 얼굴패턴 검출을 위한 복합형 신경망은 첫 단계에서 가보 변환을 사용하는 CNN 을 통해 특징 지도를 생성하고, WFMM 신경망으로 최종 얼굴패턴을 검증한다.

  • PDF

Multi-Modal Biometrics Recognition Method of Face Recognition using Fuzzy-EBGM and Iris Recognition using Fuzzy LDA (Fuzzy-EBGM을 이용한 얼굴인식과 Fuzzy-LDA를 이용한 홍채인식의 다중생체인식 기법 연구)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Ceun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.299-301
    • /
    • 2005
  • 본 연구는 생체정보를 이용하여 개인을 인증하고 확인하기 위한 방법으로 기존 단일 생체인식 기법의 단점을 보완하기 위해 홍채와 얼굴을 이용한 다중생체인식(Multi-Modal Biometrics Recognition)기법을 연구하였다. 중국 홍채 데이터베이스 CASIA(Chinese Academy of Science)에 Gabor Wavelet과 FLDA(Fuzzy Linear Discriminant Analysis)를 사용하여 특징벡터를 획득하였으며, FERET(FERET(Face Recognition Technology) 얼굴영상데이터를 사용하여 FERET 연구에서 매우 우수한 성능을 보인 EBGM알고리듬으로 특징벡터를 획득하였다. 이로부터 얻어진 두 score 값에 대하여 다양한 균등화 과정을 시도해 보았으며, 등록자와 침입자를 구분하기 위한 Fusion Algorithm으로 Bayesian Classifier, Support vector machine, Fisher's linear discriminant를 사용하였다. 또한, 널리 사용되는 방법 중 Weighted Summation을 이용하여 다중생체인식의 성능을 비교해 보았다.

  • PDF

Visual Object Tracking Using Multiple Random Walkers (다중 랜덤 워커를 이용한 객체 추적 기법)

  • Mun, Juhyeok;Kim, Han-Ul;Kim, Chang-Su
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.273-274
    • /
    • 2016
  • 본 논문에서는 다중 랜덤 워커(multiple random walkers)에 기반한 객체 추적 기법을 제안한다. 우선 서포트 벡터 머신(support vector machine)을 이용한 분류기 기반 객체 추적 기법을 소개한다. 다음으로 영상의 영역에 대한 특징 벡터 중 배경으로부터 추출된 특징 벡터를 억제하는 기법을 제안한다. 영역에서 배경 요소를 찾기 위해 다중 랜덤 워커를 이용한 전경 및 배경 추출 방법을 제시한다. 배경 요소를 억제하여 학습된 서포트 벡터 머신은 객체와 배경이 유사한 영상, 객체가 다른 물체에 의해 가려지는 영상 등에서 객체와 배경을 확실하게 구분하여 객체를 잃지 않고 추적할 수 있다. 마지막으로 실험을 통해 제안하는 기법이 기존 기법에 비해 우수한 추적 성능을 보임을 확인한다.

  • PDF

Object Tracking using Statistical Properties of Multiple Candidate Blocks in Image (영상내의 다중 후보 블록의 통계적 특징을 이용한 객체추적)

  • Chun, Jae-Bong;Park, Myeong-Chul;Ha, Suk-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.149-152
    • /
    • 2007
  • 비전 연구에 있어서 객체 추적은 무엇보다도 중요시 되어 왔다. 특히 비디오 감시 시스템에서의 객체 추적은 매우 중요하다. 본 논문에서는 영상 내에서 움직이는 객체를 추출하고 객체내의 다중 후보블록의 통계적 특징을 이용한 추적 시스템을 구성하였다. 객체를 추적하기 위해서는 먼저 움직이는 객체 추출이 선행되어야 한다. 객체 추출은 영상 내에서 배경 프레임과 매 프레임에서의 현재 프레임간의 차 연산에 의한 가중치를 이용하여 객체의 움직임을 판단하고 추출하였다. 움직이는 객체는 본 논문에서 제안한 다중 후보 블록 알고리즘을 수행하여 추적에 필요한 통계 값을 획득한다. 통계 값으로는 방향성에 필요한 블록의 중심 좌표 값과 객체추적에 필요한 객체간의 매칭 정도를 사용하였다. 본 논문에서 제안한 추적 시스템은 민감한 빛의 변화에도 강건하였으며, 특정 블록에 대해서만 연산 수행을 수행하므로 컴퓨터의 연산을 줄여 실시간 추적도 가능하다.

  • PDF

Effective Hand-Pose Recognition using Multi-Class SVM (다중 클래스 SVM을 이용한 효과적인 손 형태 인식)

  • Byeon, Jae-Hee;Nam, Yun-Young;Choi, Yoo-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.501-504
    • /
    • 2007
  • 본 논문은 다중 클래스 SVM을 이용하여 손 형태를 효과적으로 인식할 수 있는 방법을 제시한다. 컴퓨터의 상호작용 연구가 활발해짐에 따라 컴퓨터가 인간의 행동을 얼마나 정확히 인식할 수 있느냐에 대한 연구는 끊임없이 이루어지고 있다. 본 연구에서는 실시간으로 입력되는 손영상에 대하여 색상(Hue)과 채도(Saturation)를 이용한 컬러모델을 기반으로 조명의 영향을 줄이며 손의 영역을 추출하고, 특히, 팔영역을 포함한 손영역이 촬영된 영상에서 손목 이후 부분을 제외한 손 영역만을 추출하도록 하였다. 손 형태를 인식하기 위하여 손 영역으로부터 손의 특징을 18 개의 특징값으로 표현하였고, 이를 통해 학습된 다중 클래스 SVM을 이용하여 손 형태를 인식하였다.

  • PDF

Multi-Modal Recognition System Using the Fuzzy Fusion (퍼지 융합을 이용한 다중생체인식 시스템 구현)

  • Yang, Dong-Hwa;Kim, Hyung-Min;Go, Hyoun-Joo;Chun, Myung-Geun
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.355-358
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴과 지문을 이용하여 실시간 다중 생체인식 시스템 구현을 제안하였다. 얼굴인식에서는 이미지의 크기를 축소하기 위해 Wavelet Transform을 이용하였으며, 특징 값을 찾아내기 위한 방법으로는 얼굴인식에서 많이 사용되는 LDA(Linear Discriminant Analysis)를 이용하였다. 또한, 지문인식에서는 지문의 중심점을 찾아 가버 변환을 하고, 이로부터 섹터별 변량을 특징 값으로 사용하였으며, 인식 성능을 향상시킬 수 있는 상관도가 높은 지문 3개를 기준 데이터로 등록하였다. 마지막 단계로 두 가지의 생체정보를 모두 사용할 수 있도록 퍼지를 이용하여 얼굴인식의 결과와 지문인식의 결과를 융합하였으며, 단일 생체정보를 이용했을 때의 단점을 다중 생체인식 시스템을 구현함으로서 우수한 성능을 보이는 시스템을 구현하였다.

  • PDF