Proceedings of the Korea Information Processing Society Conference
/
2002.11a
/
pp.39-42
/
2002
본 논문에서는 내용 기반 이미지 검색 및 필터링 시스템을 위한 카테고리 식별 방법을 제안한다. 제안된 방법에서는 식별 가능한 카테고리를 사전에 정의하고, 정의된 카테고리를 대표할 수 있는 이미지들을 수집한다. 다음으로, 이들로부터 다중의 내용 기반 특징값을 추출하고, 추출된 특징값들로 카테고리 데이터베이스를 구성한다. 카테고리를 식별할 질의 이미지가 입력으로 들어오면, 질의 이미지로부터 추출된 다중 특징값들을 각 카테고리의 단일 특징값과 각각 비교함으로써, 카테고리를 대표하는 다중의 유사도 거리값을 측정한다. 각 카테고리를 대표하는 다중의 유사도 거리값들은 두 가지 연산 방법에 의해 조합되는데, 조합 방법은 각각의 단일 특징값이 각 카테고리 식별에 미치는 영향을 고려하여 정의된다. 최종적으로, 각 카테고리의 조합된 유사도 거리값을 비교한 다음, 가장 유사도가 큰 카테고리를 해당 질의 이미지의 카테고리로 식별한다.
Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.872-874
/
2021
본 논문은 외형 특징을 사용하지 않는 효율적인 다중 물체 추적 방법을 제안한다. 본 논문의 목적은 다중 물체 추적 방법이 합성곱 신경망 등의 외형 특징을 사용하지 않고 순수한 모션 모델의 힘으로 도달할 수 있는 최대의 성능을 찾는 것이다. 많은 다중 물체 추적 방법들이 추적 대상들 간의 유사성을 파악하기 위해 외형 특징을 사용한다. 하지만 다양한 외형 특징들을 갖는 방법들은 기본 특징 추출 알고리즘이 다르고, 다중 추적의 성능 향상이 어느 부분으로부터 오는지 정확히 파악할 수 없다. 또한, 각각 다른 매칭 알고리즘과 특징 디자인은 서로 다른 알고리즘의 효과를 순수하게 비교할 수 없다. 이러한 관점에서, 본 연구에서는 어떠한 외형 특징을 사용하지 않고 명확하게 추적 알고리즘의 효율성을 비교할 수 있는 가이드라인을 제시한다. 외형 특징을 사용하지 않고도 실용적으로 사용 가능한 성능에 도달할 수 있음을 공인 MOT2016, MOT2016 데이터셋에 대한 실험을 통해 증명한다. 이러한 방법은 GPU 를 사용하지 않고 200 fps 이상의 높은 속도를 보여 실시간 속도를 요구하는 임베디드 시스템 상의 어플리케이션에 적합하다.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.49-51
/
2001
다중스레드 모델은 데이터플로우 모델의 내부적인 병렬성, 비동기적 자료 가용성과 폰 노이만 모델의 실행 지역성을 결합하여 병렬처리 시스템의 성능을 향상시켰다. 이 모델은 프로그램의 실행을 위하여 컴파일러에 의해 생성된 스레드를 수행하며, 스레드의 생성 방법에 따라 자원 활용 빈도나 동기화 빈도와 같은 스레드의 질이 결정되는 특징이 있다. 하지만 다중스레드 모델은 실행 모델이 특정 플랫폼에 제한되는 단점을 가지고 있다. 이에 반해 자바는 플랫폼에 독립거인 특징을 가지고 있어 다중스레드 모델의 스레드 코드를 실행 단위인 자바 언어로 변환하여 다중스레드 모델의 특징을 여러 플랫폼에서 수정 없이 사용할 수 있게 된다. 자바는 분산된 환경에 적합한 언어이기 때문에 본 논문에서 제안한 번역기에 의해 다중스레드 모델의 스레드 코드를 자바 언어로 변환한 후 자바의 원격 매소드 호출을 이용하여 다중스레드 모델의 스레드 코드를 분산된 환경에서 처리하였다. 본 논문은 다중스레드 코드가 로컬 컴퓨터에서 여러 스레드를 생성하여 처리하던 것을 자바의 원격 메소드 호출을 이용하여 분산된 환경에서 실행 가능하도록 한다. 다중스레드 모델의 스레드 코드를 분산 환경에서 실행 가능한 자바 바이트 코드로 변환하는 번역기를 설계, 구현한다.
현재 사회 전반에 걸쳐 급격히 증가하고 있는 멀티미디어 정보를 효율적으로 관리, 활용할 수 있는 방법이 다양하게 연구되고 있다. 본 연구에서는 내용기반 영상검색을 위한 다중 영상특징 추출방법과 특징결합 방법을 제시한다. 우선 전처리 및 캐니 에지 검출법으로 질의영상내 물체영역의 에지를 검출한다. 그 다음에 제안한 볼록 다각형 알고리즘을 통해 분할된 물체영상을 획득한다. 분할된 물체영상은 HSV 공간으로 변환되고 히스토그램 인터섹션 방법으로 유사도가 측정된다. 또한 분할된 물체영상은 웨블릿 변환 영상으로도 변환된다. 이러한 변환후 웨블릿 부밴드의 LL 영역에 제안하는 거리 밴드 평균 오토코릴로그램 알고리즘을 적용하여 오토코릴로그램 유사도를 측정한다. 그리고 GLCM을 이용한 엔트로피와 콘트라스트 유사도는 LH, HL 영역에서 측정된다. 전 과정을 통해 얻은 4개의 다중 영상특징은 수정된 보다 카운트 방법으로 결합되고 최종 유사도가 결정된다. 실험결과 제안한 다중 영상특징을 사용한 검색 방법이 단일 영상특징을 사용하는 검색 방법보다 소환성과 정확성의 성능에 있어 우수함을 보였다. 그리고 NMRR 측정에서도 개선된 성능을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2000.04a
/
pp.68-70
/
2000
다중스레드 모델은 데이터플로우 모델의 내부적인 병렬성, 비동기적 자료 가용성과 폰 노이만 모델의 실행 지역성을 결합하여 병렬처리 시스템의 성능을 향상 시켰다. 이 모델은 프로그램의 실행을 위하여 컴파일러에 의해 생성된 스레드를 수행하며, 스레드의 생성 방법에 따라 자원 활용 빈도나 동기화 빈도와 같은 스레드의 질이 결정 되는 특징이 있다. 하지만 다중스레드 모델은 실행 모델이 특정 플랫폼에 제한되는 단점을 가지고 있다. 이에 반해 자바는 플랫폼에 독립적인 특징을 가지고 있어 다중스레드 모델의 스레드 코드를 실행 단위인 자바 언어로 변환하면 다중스레드 모델의 특징을 여러 플랫폼에서 수정 없이 사용할 수 있게 된다. 자바는 원시 언어를 중간 언어 형태의 바이트 코드로 변환하여 각 아키텍처에 맞게 설계된 자바 가상 머신이 설치된 시스템에서 자바 언어를 수행한다. 이러한 자바 언어의 바이트 코드는 번역기의 중간 언어와 같은 역할을 수행하고, 자바 가상 머신은 번역기의 후위부와 같은 역할을 한다. 본 논문은 다중스레드 코드가 플랫폼에 독립적인 특성을 갖출 수 있도록 다중스레드 코드를 자바 가상 머신에서 실행 가능하도록 한다. 즉, 다중스레드 모델의 스레드 코드를 자바 바이트 코드로 변환하는 번역기를 설계, 구현하고, 자바 가상 머신의 실행을 분석한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06b
/
pp.280-281
/
2011
특징형상기반 다중해상도 모델링 기법은 컴퓨터 그래픽스의 응용분야인 컴퓨터 응용 설계, 해석, 가상생산과 같은 분야에 주목을 받고 있는 새로운 기술이다. 다중해상도 모델을 제공하기 위하여 특징형상을 재배열할 필요가 있는데 이 경우 빼기 더하기 집합연산의 순서가 달라지면 최종형상이 달라질 수 있다. 이러한 문제를 해결하기 위하여 특징형상 모델링 연혁을 고려한 선택적 집합 연산을 개발하였다. 이 작업을 적용하면 최종형상뿐만 아니라 합리저긴 중간단계의 다중해상도 모델도 생성할 수 있다.
이 연구에서는 C 밴드 SAR 자료이면서 서로 다른 편광 상태의 자료를 제공할 수 있는 다중 시기 Radarsat-1 자료와 ENVISAT ASAR 자료를 이용한 토지 피복 분류를 수행하였다. 다중 시기/편광 자료로부터 평균 후방산란계수, 시간적 변이도, 긴밀도 등의 특징을 기본적으로 추출하였고, 이외에 상호 비교를 위해 주성분 분석을 이용한 특징 추출을 시도하였다. 특징들을 이용한 분류기법으로는 Random Forests를 적용하였다. 충남 예당평야 일대를 대상으로 사례연구를 수행한 결과, 주성분 분석을 통한 특징과 다편광 자료를 이용하였을 때 분류 정확도가 향상되는 것으로 나타났다.
Journal of the Institute of Convergence Signal Processing
/
v.19
no.1
/
pp.1-6
/
2018
In this paper, we propose the method to eliminate repetitive processes for key-point detection on multi-scale image space. The proposed method detects key-points from the original image, and select a good key-points using the cluster filters, and create the key-point clusters. And it select reference objects by using direction angles of the key-point clusters, predict the scale of the original image by using the distributed distance ratio. It transform the scale of the reference image, and apply the detection of key-points to the transformed reference image. In the results of the experiment, the proposed method can be found to improve the key-points detection time by 75 % and 71 % compared to SIFT method and scaled ORB method using the multi-scale images.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.742-744
/
2004
본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.103-106
/
2007
본 논문에서는 얼굴, 홍채 등의 생채정보를 안전하게 은닉하고 효과적으로 은닉정보를 추출할 수 있는 웨이블렛 기반 워터마킹 기법을 제안한다. 얼굴과 홍채의 특징데이터는 Fuzzy-LDA(Fuzzy-Based Linear Discriminant Analysis)를 이용하여 추출하였다. 워터마킹알고리즘은 Wavelet을 이용하여 생체이미지에 생체특징 삽입 이전의 생체 인식율과 워터마킹알고리즘을 거쳐 생체특징을 추출한 후의 인식률 비교를 통해 성능을 평가하였다. 또한 단일생체특징 삽입과 다중생체특징삽입을 통해 단일생체보안과 다중생체보안의 실험을 수행, 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.