Fingerprint classification is useful in an automated fingerprint identification system (AFIS) to reduce the matching time by categorizing fingerprints. Based on Henry system that classifies fingerprints into S classes, various techniques such as neural networks and support vector machines (SVMs) have been widely used to classify fingerprints. Especially, SVMs of high classification performance have been actively investigated. Since the SVM is binary classifier, we propose a novel classifier-combination model, multiple decision templates (MuDTs), to classily fingerprints. The method extracts several clusters of different characteristics from samples of a class and constructs a suitable combination model to overcome the restriction of the single model, which may be subject to the ambiguous images. With the experimental results of the proposed on the FingerCodes extracted from NIST Database4 for the five-class and four-class problems, we have achieved a classification accuracy of $90.4\%\;and\;94.9\%\;with\;1.8\%$ rejection, respectively.
Kim, Jee-Hyun;Lee, Seyoung;Kim, Yerim;Ahn, Seo-Yeong;Park, Saerom
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.81-84
/
2022
제조 산업에서의 이상치 검출은 생산품의 품질과 운영비용을 절감하기 위한 중요한 요소로 최근 딥러닝을 사용하여 자동화되고 있다. 이상치 검출을 위한 딥러닝 기법에는 CNN이 있으며, CNN을 계층적으로 구성할 경우 단일 CNN 모델에 비해 상대적으로 성능의 향상을 보일 수 있다는 것이 많은 선행 연구에서 나타났다. 이에 MVTec-AD 데이터셋을 이용하여 계층 CNN이 다중 클래스 이상치 판별 문제에 대해 효과적인지를 탐구하고자 하였다. 실험 결과 단일 CNN의 정확도는 0.7715, 계층 CNN의 정확도는 0.7838로 다중 클래스 이상치 판별 문제에 있어 계층 CNN 방식 접근이 다중 클래스 이상치 탐지 문제에서 알고리즘의 성능을 향상할 수 있음을 확인할 수 있었다. 계층 CNN은 모델과 파라미터의 개수와 리소스의 사용이 단일 CNN에 비하여 기하급수적으로 증가한다는 단점이 존재한다. 이에 계층 CNN의 장점을 유지하며 사용 리소스를 절약하고자 하였고 K-means, GMM, 계층적 클러스터링 알고리즘을 통해 제작한 새로운 클래스를 이용해 계층 CNN을 구성하여 각각 정확도 0.7930, 0.7891, 0.7936의 결과를 얻을 수 있었다. 이를 통해 Clustering 알고리즘을 사용하여 적절히 물체를 분류할 경우 물체에 따른 개별 상태 판단 모델을 제작하는 것과 비슷하거나 더 좋은 성능을 내며 리소스 사용을 줄일 수 있음을 확인할 수 있었다.
Proceedings of the Korea Association of Information Systems Conference
/
1997.10a
/
pp.437-443
/
1997
객체를 기반으로 하는 소프트웨어 부품의 재사용은 개별 부품의 효율적 관리와 이 것의 적절한 조합을 통해 소프트웨어 생산성을 극대화한다. 이를 위해서는 클래스 라이브러 리 화에 의한 명확한 식별과 분류, 정제, 저장으로 사용자 요구에 맞는 부품을 쉽게 검색할 수 있으며 새로운 부품의 수정과 합성이 가능한 재사용 시스템이 요구된다. 따라서 본 논문 에서는 객체지향을 기반의 소프트웨어 개발에 있어 브라우징 기법을 적용하여 사용자 요구 에 맞도록 재사용 부품들을 분류, 저장, 검색하여 재상용 할뿐더러 검색된 클래스가 사용자 의 요구에 맞도록 수정-합성 과정을 통해 재사용 가능하게 하는 다중 뷰 재사용 통합 시스 템인 MRIS (Multi-View Reuse Integrated System)를 구현하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.649-651
/
2018
본 논문에서는 CNN에서 클래스 활성화 맵과 원샷 러닝을 결합하여 트위터 분류를 위한 딥 러닝 모델을 제안한다. 클래스 활성화 맵은 트윗 분류에 대한 분류 주제와 연관된 핵심 어휘를 추출하고 강조 표시하도록 사용되었다. 특히 작은 학습 데이터 셋을 사용하여 다중 클래스 분류의 성능을 향상시키기 위해 원샷 러닝 방법을 적용한다. 제안하는 방법을 검증하기위해 TREC 2018 태스크의 사건 스트림(TREC-IS) 학습데이터를 사용하여 비교실험을 했다. 실험 결과에서 CNN 기본 모델의 정확도는 58.1%이고 제안 방법의 정확도는 69.6%로 성능이 향상됨을 보였다.
Recently, support vector machine has been widely used in various application fields due to its superiority of classification performance comparing with decision tree and neural network. Since support vector machine is basically designed for the binary classification problem, output coding method to analyze the classification result of multiclass binary classifier is used for the application of support vector machine into the multiclass problem. However, previous feature selection method for output coding based support vector machine found the features to improve the overall classification accuracy instead of improving each classification accuracy of each classifier. In this paper, we propose the novel feature selection method to find the features for maximizing the classification accuracy of each binary classifier in output coding based support vector machine. Experimental result showed that proposed method significantly improved the classification accuracy comparing with previous feature selection method.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.3
/
pp.289-293
/
2005
Pattern classification extracts various types of pattern information expressing objects in the real world and decides their class. The top priority of pattern classification technologies is to improve the performance of classification and, for this, many researches have tried various approaches for the last 40 years. Classification methods used in pattern classification include base classifier based on the probabilistic inference of patterns, decision tree, method based on distance function, neural network and clustering but they are not efficient in analyzing a large amount of multi-dimensional data. Thus, there are active researches on multiple classifier systems, which improve the performance of classification by combining problems using a number of mutually compensatory classifiers. The present study identifies problems in previous researches on multiple SVM classifiers, and proposes BORSE, a model that, based on 1:M policy in order to expand SVM to a multiple class classifier, regards each SVM output as a signal with non-linear pattern, trains the neural network for the pattern and combine the final results of classification performance.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.883-885
/
2005
지지 벡터 기계(Support Vector Machine: SVM)를 이용한 다중부류 분류기법이 최근 활발히 연구되고 있다. SVM은 이진분류기이기 때문에 다중부류 분류를 위해서 다수의 분류기를 구성하고 이들을 효과적으로 결합하는 방법이 필요하다. 본 논문에서는 기존의 정적인 다중분류기 결합 방법과는 달리 포섭구조의 분류모델을 확률에 따라 동적으로 구성하는 방법을 제안한다. 확률적 분류기인 나이브 베이즈 분류기(NB)를 이용하여 입력된 샘플의 각 클래스에 대한 확률을 계산하고, OVA (One-Vs-All) 전략으로 구축된 다중의 SVM을 획득된 확률에 따라 포섭구조로 구성한다. 제안하는 방법은 OVA SVM에서 발생하는 중의적인 상황을 효과적으로 처리하여 고성능의 분류를 수행한다. 본 논문에서는 지문분류 문제에서 대표적인 NIST-4 지문 데이터베이스를 대상으로 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.8\%$의 분류율을 획득하였으며, 기존의 결합 방법인 다수결 투표(Majority vote), 승자독식(Winner-takes-all), 행동지식공간 (Behavior knowledge space), 결정템플릿(Decision template) 등보다 높은 성능을 확인하였다.
This study propose a image processing system of unsupervised analysis. This system integrates low-level segmentation and high-level classification. The segmentation and classification are conducted respectively with and without spatial constraints on merging by a hierarchical clustering procedure. The clustering utilizes the local mutually closest neighbors and multi-window operation of a pyramid-like structure. The proposed system has been evaluated using simulated images and applied for the LANDSATETM+ image collected from Youngin-Nungpyung area on the Korean Peninsula.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.458-461
/
2004
오존 반응 메카니즘은 상당히 복잡하고 비선형적이기 때문에 오존 농도를 예측하는 것은 상당한 어려움을 안고 있다 따라서, 신뢰성 높은 오존 예측값을 구하는데 단일 예측모델만으로는 한계가 있으며, 이를 개선하기 위하여 다중 모델을 제안하였다. 입력데이터에 퍼지 클러스터링을 사용하여 고, 중, 저농도별로 그룹핑한 후, 그룹핑된 오존농도에 대해서 의사결정 트리를 사용하여 그룹핑된 오존데이터가 어느 정도 분류능력을 갖는지 파악하여, 오차가 가장 적은 분류특성을 갖는 그룹을 설정하여, 다중모델의 입력 데이터로 사용하여 모델을 형성하였다. 의사결정 트리를 이용하여 모델의 입력 데이터를 설정하는 것은 어떤 오존농도까지의 범위를 클래스로 설정하느냐에 따라서 모델의 성능과 고, 중, 저농도의 오존을 분류하는 성능이 달라지므로 본 논문에서는 퍼지 클러스터링을 이용하여 의사결정 트리의 클래스의 범위를 설정하여 예측 시스템을 구현하였다.
개발 과정의 생산성과 프로그램의 신뢰성을 향상시키기 위하여 소프트웨어 재사용이 매우 중요하며 , 효과적인 재사용을 위해서 세밀한 분류 방법과 정확한 검색 방법에 기반한 객체 지향 재사용 라이브러리가 필수적이다. 본 연구에서는 재사용 라이브러리의 다중 클러스터링(multi-way clustering) 분류 방법과 클러스터 기반 선형 검색(cluster-based linear retrieval) 방법에 유전자 알고리즘(genetic algorithm)을 적용한다. 다중 클러스터링은 부품들이 할당된 클러스터 개수, 클러스터 내부 유사도 그리고 클러스터들 사이의 유사도를 최적화하는 클러스터링을 찾아 부품을 세밀히 분류하는 것이고, 클러스터 기반 선형 검색은 주어진 질의와 유사한 부품을 많이 포함하는 클러스터를 검색하는 것이다. 본 논문에서는 유전자 알고리즘이 시뮬레이티드 어닐링 알고리즘(simulated annealing algorithm) 보다 우수한 해를 찾는 것을 실험을 통하여 보이고, 또한 본 알고리즘을 이용한 CORBA 기반의 재사용 클래스 라이브러리(RCL)를 기술한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.