• 제목/요약/키워드: 다중 클래스 분류

검색결과 137건 처리시간 0.024초

다중클래스 한국어 감성분석에서 클래스 불균형과 손실 스파이크 문제 해결을 위한 기법 (Methods For Resolving Challenges In Multi-class Korean Sentiment Analysis)

  • 박제윤;양기수;박예원;이문기;이상원;임수연;조재훈;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.507-511
    • /
    • 2020
  • 오픈 도메인 대화에서 텍스트에 나타난 태도나 성향과 같은 화자의 주관적인 감정정보를 분석하는 것은 사용자들에게서 풍부한 응답을 이끌어 내고 동시에 제공하는 목적으로 사용될 수 있다. 하지만 한국어 감성분석에서 기존의 대부분의 연구들은 긍정과 부정 두개의 클래스 분류만을 다루고 있고 이는 현실 화자의 감정 정보를 정확하게 분석하기에는 어려움이 있다. 또한 최근에 오픈한 다중클래스로된 한국어 대화 감성분석 데이터셋은 중립 클래스가 전체 데이터셋의 절반을 차지하고 일부 클래스는 사용하기에 매우 적은, 다시 말해 클래스 간의 데이터 불균형 문제가 있어 다루기 굉장히 까다롭다. 이 논문에서 우리는 일곱개의 클래스가 존재하는 한국어 대화에서 세션들을 효율적으로 분류하는 기법들에 대해 논의한다. 우리는 극심한 클래스 불균형에도 불구하고 76.56 micro F1을 기록하였다.

  • PDF

레이블 멱집합 분류와 다중클래스 확률추정을 사용한 단백질 세포내 위치 예측 (Prediction of Protein Subcellular Localization using Label Power-set Classification and Multi-class Probability Estimates)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제18권10호
    • /
    • pp.2562-2570
    • /
    • 2014
  • 단백질의 기능을 유추할 수 있는 중요한 정보중의 하나는 단백질이 존재하는 세포내 위치이다. 최근에는 하나의 단백질이 동시에 존재하는 여러 세포내 위치를 예측하는 연구가 활발하다. 본 논문에서는 단백질이 존재하는 세포내의 다중위치를 예측하기 위해서 레이블 멱집합 방법을 개선한다. 레이블 멱집합 방법으로 분류한 다중위치들을 예측 확률에 따라 결합하여 최종적인 다중레이블로 분류한다. 각 다중위치에 대한 정확한 확률적 기여를 구하기 위하여 쌍별 비교와 오류정정 출력코드를 사용한 다중클래스 확률추정 방법을 적용하였다. 단백질 세포내 위치 예측 실험에 제안한 방법을 적용하여 성능이 향상됨을 보였다.

신경망을 결합한 다중 SVM 분류기 (A Multiple SVM Classifier Combined With Neural Networks)

  • 고재필;김승태;김은주;변혜란
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF

다중 끌개를 갖는 셀룰라 오토마타를 이용한 패턴 분류기 생성 (Multiple Attractor CA Based Pattern Classifier)

  • 황윤희;조성진;최언숙
    • 한국전자통신학회논문지
    • /
    • 제5권3호
    • /
    • pp.315-320
    • /
    • 2010
  • 다중 클래스로 이루어진 패턴을 분류하는 것은 데이터 베이스 시스템에서 기록을 그룹화하거나 VLSI 회로에서 어디에 결함이 있는지를 찾는 것 등에서 중요한 역할을 한다. 본 논문에서는 주어진 다중 클래스 패턴을 MACA(Multiple Attractor Cellular Automata)와 부분공간의 개념을 이용하여 가능한 최소 메모리량을 필요로 하는 다중 클래스 패턴 분류기를 구성하는 알고리즘을 제안한다.

다중 클래스 아다부스트를 이용한 엘리베이터 내 군집 밀도 추정 (Crowd Density Estimation with Multi-class Adaboost in elevator)

  • 김대훈;이영현;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.45-52
    • /
    • 2012
  • 본 논문에서는 다중 클래스 아다부스트 기반의 분류기를 이용하여 엘리베이터 내 군집 밀도를 추정하는 방법을 제안한다. SOM을 사용하는 기존의 방법은 재현성이 떨어지며 충분한 성능을 내지 못한다. 제안한 방법은 GLDM(Grey-Level Dependency Matrix)과 GGDM(Grey-Gradient Dependency Matrix)의 텍스처 특징과 다중 클래스 아다부스트 기반의 분류기를 통해 실내 군집 밀도를 추정한다. 다중 클래스를 분류하기 위해 기존의 아다부스트 알고리즘에서 웨이트 업데이트 식을 변형하여 더 높은 성능의 약한 분류기를 생성하도록 하였다. 군집 밀도는 인원수에 따라 0명, 1~2명, 3~4명, 5명 이상 등 네 가지 클래스로 구분하였다. 엘리베이터 내 영상을 이용한 모의 실험 결과 제안된 방법은 기존의 방법보다 약 20% 정도의 검출률 향상을 나타내었다.

레이블 매핑을 이용한 다중 이미지 분류 (Multiple image classification using label mapping)

  • 전승제;이동준;이동휘
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.367-369
    • /
    • 2022
  • 본 논문에서는 훈련된 모델이 분류에 실패한 이미지들에 대한 정확한 결과를 확인하기 위해 다중 클래스의 이미지 분류를 구현하면서 각각의 클래스에 맞게 레이블 매핑을 하여 예측 결과를 확인했다. Kaggle의 Intel Image Classification 데이터셋을 사용하여 CNN 모델을 구축하고 훈련을 진행하였으며, 테스트 데이터셋의 이미지들을 레이블 매핑을 통해 다중 클래스의 이미지들이 매핑된 레이블 값과 모델이 분류한 값을 비교하였다.

  • PDF

다중 클래스의 이미지 장면 분류 (Image Scene Classification of Multiclass)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.551-552
    • /
    • 2021
  • 본 논문에서는 변환 학습에 기반을 둔 다중 클래스 영상 장면 분류 방법을 제시한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련된 네트워크 모델에 의존하여 다중 클래스의 자연 장면 이미지를 분류한다. 실험에서는 최적화된 ResNet 모델을 Kaggle의 Intel Image Classification 데이터 셋에 분류하여 우수한 결과를 얻었다.

  • PDF

다중 클래스 이미지 표정 분류 (Multiclass image expression classification)

  • 오명호;민송하;김종민
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.701-703
    • /
    • 2022
  • 본 논문에서는 지도 학습에 기반을 둔 다중 클래스 이미지 장면 분류 방법을 제시한다. 데이터 세트에서 콘볼루션 뉴런 네트워크 모델에 학습시켜 다중 클래스 사람의 표정 장면 이미지를 분류하였으며, 실험에서는 최적화된 CNN 모델을 Google image 데이터 세트에 분류하여 유의미한 결과를 얻을 수 있었다.

  • PDF

서포트 벡터 기반 퍼지 분류 시스템을 이용한 물체 인식 (The study on the object recognition using Fuzzy Classification system based on Support Vector)

  • 김성진;원상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.167-170
    • /
    • 2003
  • 본 논문에서는 패턴 인식의 전형적인 경우인 보이기 기반 물체 인식(Appearance based object recognition)을 수행하기 위하여, 일반적인 퍼지 분류 모델과, 서포트 벡터 머신을 하이브리드(hybrid) 하게 연결한 서포트 벡터 기반 퍼지 분류 시스템이라는 새로운 방법을 제안하고 이에 대하여 연구한다. 일반적인 분류(classification)문제의 경우 두 클래스로 구분하는데 최적의 성능을 가지고 있는 서포트 벡터 머신이 다중클래스(Multiclass)의 경우 발생 하는 계산량의 증가 문제를 해 결하기 위하여 다중 클래스 분류(Multiclass classification)에 장점을 가진 퍼지 분류 시스템을 도입, 서포트 벡터 머신에 연결함으로써 단점을 보완하는 시스템을 제안한다. 즉 서포트 벡터 머신을 통해 퍼지 시스템의 구조를 러닝(learning)하는데 사용하여 최종 적으로는 퍼지 분류 시스템(Fuzzy Classifier)이 나오도록 하는 것이다. 이 시스템의 성능을 확인하고자 여러 가지 물체들에 대한 이미지를 가지고 있는 COIL(Columbia Object Image Library) 데이터 베이스를 사용하여 보이기 기반 물체 인식(Appearance based Object Recognition)을 수행 하였으며 이를 순수한 서포트 벡터 머신만을 이용하여 물체 인식을 수행한 경우와 정확도 및 인식 시간에 대하여 비교하였다.

  • PDF

학습을 이용한 영상 분류 방법 (Image Classification Method Using Learning)

  • 신성윤;이현창;신광성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.285-286
    • /
    • 2021
  • 본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안하도록 한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련 된 네트워크 모델을 사용하여 다중 클래스의 자연 장면 이미지를 분류하였다. 실험에서 최적화 된 ResNet 모델은 Kaggle의 Intel Image Classification 데이터 세트에 분류되어 우수한 결과를 얻었다.

  • PDF