• Title/Summary/Keyword: 다중 입력 다중 출력

Search Result 329, Processing Time 0.026 seconds

Pronunciation Dictionary For Continuous Speech Recognition (한국어 연속음성인식을 위한 발음사전 구축)

  • 이경님;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.197-199
    • /
    • 2000
  • 연속음성인식을 수행하기 위해서는 발음사전과 언어모델이 필요하다. 이 둘 사이에는 디코딩 단위가 일치하여야 하므로 발음사전 구축시 디코딩 단위로 표제어 단위를 선정하며 표제어 사이의 음운변화 현상을 반영한 발음사전을 구축하여야 한다. 한국어에 부합하는 음운변화현상을 분석하여 학습용 자동 발음열을 생성하고, 이를 통하여 발음사전을 구축한다. 전처리 단계로 기호, 단위, 숫자 등 전처리 과정 및 형태소 분석 과정을 수행하며, 디코딩 단위인 의사 형태소 단위를 생성하기 위해 규칙을 이용한 태깅 과정을 거친다. 이를 통해 나온 결과를 발음열 생성기 입력으로 하며, 결과는 학습용 발음열 또는 발음사전 구성을 위한 형태로 출력한다. 표제어간 음운변화 현상이 반영된 상태의 표제어 단위이므로 실제 음운변화가 반영되지 않은 상태의 표제어와는 그 형태가 상이하다. 이는 연속 발음시 생기는 현상으로 실제 인식에는 이 음운변화 현상이 반영된 사전이 필요하게 된다. 생성된 발음사전의 효용성을 확인하기 위해 다음과 같은 실험을 통해 성능을 평가하였다. 음향학습을 위하여 PBS(Phonetically Balanced Sentence) 낭독체 17200문장을 녹음하고 그 전사파일을 사용하여 학습을 수행하였고, 발음사전의 평가를 위하여 이 중 각각 3100문장을 사용하여 다음과 같은 실험을 수행하였다. 형태소 태그정보를 이용하여 표제어간 음운변화 현상을 반영한 최적의 발음사전과 다중 발음사전, 언어학적 기준에 의한 수작업으로 생성한 표준 발음사전, 그리고 표제어간의 음운변화 현상을 고려하지 않고 독립된 단어로 생성한 발음사전과의 비교 실험을 수행하였다. 실험결과 표제어간 음운변화 현상을 반영하지 않은 경우 단어 인식률이 43.21%인 반면 표제어간 음운변화 현상을 반영한 1-Best 사전의 경우 48.99%, Multi 사전의 경우 50.19%로 인식률이 5~6%정도 향상되었음을 볼 수 있었고, 수작업에 의한 표준발음사전의 단어 인식률 45.90% 보다도 약 3~4% 좋은 성능을 보였다.

  • PDF

A Fault Tolerant ATM Switch using a Fully Adaptive Self-routing Algorithm -- The Cyclic Banyan Network (완전 적응 자기 경로제어 알고리즘을 사용하는 고장 감내 ATM 스위치 - 사이클릭 베니안 네트웍)

  • 박재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1631-1642
    • /
    • 1999
  • In this paper, we propose a new fault tolerant ATM Switch and a new adaptive self-routing scheme used to make the switch to be fault tolerant. It can provide more multiple paths than the related previous switches between an input/output pair of a switch by adding extra links between switching elements in the same stage and extending the self-routing scheme of the Banyan network. Our routing scheme is as simple as that of the banyan network, which is based on the topological relationships among the switching elements (SE’s) that render a packet to the same destination with the regular self-routing. These topological properties of the Banyan network are discovered in this paper. We present an algebraic proof to show the correctness of this scheme, and an analytic reliability analysis to provide quantitative comparisons with other switches, which shows that the new switch is more cost effective than the Banyan network and other augmented MIN’s in terms of the reliability.

  • PDF

A FPGA Implementation of BIST Design for the Batch Testing (일괄검사를 위한 BIST 설계의 FPGA 구현)

  • Rhee, Kang-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1900-1906
    • /
    • 1997
  • In this paper, the efficient BILBO(named EBILBO) is designed for BIST that is able to batch the testing when circuit is designed on FPGA. The proposed algorithm of batch testing is able to test the normal operation speed with one-pin-count that can control all part of large and complex circuit. PRTPG is used for the test pattern and MISR is used for PSA. The proposed algorithm of batch testing is VHDL coding on behavioral description, so it is easily modified the model of test pattern generation, signature analysis and compression. The EBILBO's area and the performance of designed BIST are evaluated with ISCAS89 benchmark circuit on FPGA. In circuit with above 600 cells, it is shown that area is reduced below 30%, test pattern is flexibly generated about 500K and the fault coverage is from 88.3% to 100%. EBILBO for the proposed batch testing BIST is able to execute concurrently normal and test mode operation in real time to the number of $s+n+(2^s/2^p-1)$ clock(where, in CUT, # of PI;n, # of register, p is order # of polynomial). The proposed algorithm coded with VHDL is made of library, then it well be widely applied to DFT that satisfy the design and test field on sme time.

  • PDF

A Research on Control Method Design for the Intake Flow of a Dual Combustion Ramjet Engine using Multiple Control Inputs (다중의 제어입력을 이용한 이중연소 램제트 엔진의 흡입구 유동 제어기법 연구)

  • Park, Jungwoo;Park, Iksoo;Kim, Junghoe;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.49-58
    • /
    • 2018
  • This paper introduces a research on the control method design for the subsonic intake flow of a dual-combustion ramjet engine. To design the control method, the intake flow dynamic response characteristics, based on a designated flow condition and intake geometry, are investigated, and a control method concept considering the intake flow characteristics is established. Using a dynamic simulation model of a dual-combustion ramjet, control input/output linearized models are obtained such that a control loop design based on linearized models can be accomplished. Finally, from various control loop simulations, the performance of the control method, including its control loop stability, is evaluated.

Prediction of Drug-Drug Interaction Based on Deep Learning Using Drug Information Document Embedding (약물 정보 문서 임베딩을 이용한 딥러닝 기반 약물 간 상호작용 예측)

  • Jung, Sun-woo;Yoo, Sun-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.276-278
    • /
    • 2022
  • All drugs have a specific action in the body, and in many cases, drugs are combinated due to complications or new symptoms during existing drug treatment. In this case, unexpected interactions may occur within the body. Therefore, predicting drug-drug interactions is a very important task for safe drug use. In this study, we propose a deep learning-based predictive model that learns using drug information documents to predict drug interactions that may occur when using multiple drugs. The drug information document was created by combining several properties such as the drug's mechanism of action, toxicity, and target using DrugBank data. And drug information document is pair with another drug documents and used as an input to a deep learning-based predictive model, and the model outputs the interaction between the two drugs. This study can be used to predict future interactions between new drug pairs by analyzing the differences in experimental results according to changes in various conditions.

  • PDF

Detects depression-related emotions in user input sentences (사용자 입력 문장에서 우울 관련 감정 탐지)

  • Oh, Jaedong;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1759-1768
    • /
    • 2022
  • This paper proposes a model to detect depression-related emotions in a user's speech using wellness dialogue scripts provided by AI Hub, topic-specific daily conversation datasets, and chatbot datasets published on Github. There are 18 emotions, including depression and lethargy, in depression-related emotions, and emotion classification tasks are performed using KoBERT and KOELECTRA models that show high performance in language models. For model-specific performance comparisons, we build diverse datasets and compare classification results while adjusting batch sizes and learning rates for models that perform well. Furthermore, a person performs a multi-classification task by selecting all labels whose output values are higher than a specific threshold as the correct answer, in order to reflect feeling multiple emotions at the same time. The model with the best performance derived through this process is called the Depression model, and the model is then used to classify depression-related emotions for user utterances.

Measurement strategy of a system parameters for the PI current control of the A.C. motor (교류 전동기의 PI 전류제어를 위한 시스템 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • This Paper propose the method that measure main system parameters for PI(proportional-integral) current control of a.c. motor adopting the vector control technique. For current control, the PI control input is could be tuning by several selective methods. Among the several methods, the method that using the main system parameters, wire resistance and inductance, are frequently used. In this study, the technique to dissect and measure these two system parameters through the results of simple feedback control. This analytic measurement method is measuring parameters step by step dissecting the results of P control using simple proportional feedback gain about the unit step or multiple step reference command. This strategy is an real time analytic measurement method that calculate current control gains of torque component and flux component both for vector control of A.C. motor without introducing the further measurement circuits and complex measuring algorithms.

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.

  • PDF

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.