• Title/Summary/Keyword: 다중 원추 현상

Search Result 2, Processing Time 0.023 seconds

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration (다중 원추형으로 배치된 관성센서의 FDI 성능 분석)

  • Kim, Hyun Jin;Song, Jin Woo;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.943-951
    • /
    • 2015
  • Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.

Color Correction Method for High Dynamic Range Image Using Dynamic Cone Response Function (동적 원추 세포 응답을 이용한 높은 동적 폭을 갖는 영상 색상 보정 방법)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.104-112
    • /
    • 2012
  • Recently, the HDR imaging technique that mimics human eye is incorporated with LCD/LED display devices to deal with mismatch between the real world scene and the displayed image. However, HDR image has a veiling glare limit as well as a scale of the local contrast problem. In order to overcome these problems, several color correction methods, CSR(center/surround Retinex), MSR (Multi-Scale Retinex), tone-mapping method, iCAM06 and so on, are proposed. However, these methods have a dominated color throughout the entire resulting image after performing color correction. Accordingly, this paper presents a new color correction method using dynamic cone response function. The proposed color correction method consists of tone-mapping and dynamic cone response. The tone-mapping is obtained by using a linear interpolation between chromatic and achromatic. Thereafter, the resulting image is processed through the dynamic cone response function, which estimates the dynamic responses of human visual system as well as deals with mismatch between the real scene image and the rendered image. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.