• Title/Summary/Keyword: 다중 안테나 시스템

Search Result 633, Processing Time 0.024 seconds

Transmit Antenna Selection Technique Based on Channel Capacity for Spatial Modulation Systems (공간변조 시스템에서 채널 용량 기반 송신 안테나 선택 기술)

  • Yim, Han Young;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2521-2526
    • /
    • 2013
  • In this paper, a novel spatial modulation (SM) with transmit antenna selection (TAS) based on maximizing channel capacity is proposed. Comparing to the conventional TAS technique, the proposed TAS considers the channel capacity of the MIMO channel with antenna selection. The optimal antenna set selection is applied to SM by taking account of the all possible sets, and then, a sub-optimal antenna set selection is also proposed for reducing the computational complexity of the optimal method. Computer simulations show that the proposed TAS significantly outperforms the existing SM scheme based on the magnitude of the channel vectors in terms of bit error rate (BER) in various environments.

Comparison between Vector quantization and Scalar quantization in multiuser MIMO systems with limited feedback (제한된 피드백을 가지는 다중사용자 다중안테나 시스템에서 벡터 양자화 기법과 스칼라 양자화 기법의 성능 비교)

  • Ko, Kyeong-Jun;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.4-5
    • /
    • 2010
  • 다중사용자 다중안테나 시스템은 높은 성능 이득을 가지기 때문에 현재 활발히 연구가 진행되고 있다. 그러나 다중사용자 시스템은 필연적으로 간섭이 발생하게 된다. 송신단이 각 수신단의 채널 정보를 완전히 알면 기존의 간섭제거 기법으로 완벽히 간섭을 제거할 수 있지만 제한된 피드백 환경에서는 그럴 수 없다. 제한된 피드백 환경에서는 채널을 양자화 해야 되는데 양자화 기법으로는 벡터 양자화와 스칼라 양자화 기법이 있다. 일반적으로는 벡터 양자화가 스칼라 양자화 보다 성능이 더 좋다고 알려져 있다. 본 논문에서는 벡터 양자화와 스칼라 양자화의 성능을 비교하고 그 차이가 어느 정도 되는 지 실험결과를 통해서 알아보겠다.

  • PDF

SDR 스마트 안테나 기지국의 표준화를 위한 API 제안

  • Hyeon, Seung-Heon;Choe, Seung-Won
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4
    • /
    • pp.52-60
    • /
    • 2007
  • 스마트 안테나 어플리케이션 프로그래밍 인터페이스(SAAPI)는 Software Defined Radio (SDR) 네크워크에서 동작하는 스마트 안테나 시스템의 개방성, 유연성, 상호 운영성 및 호환성을 위해 제안된 표준 어플리케이션 프로그래밍 인터페이스이다. 스마트 안테나 API는 스마트 안테나 시스템의 제어를 담당하는 SAControl 컴포넌트, 빔포밍(beamforming), 도달각(Direction of Arrival: DOA) 추정, 시공간 부호화(Space Time Coding: STC) 등의 다양한 알고리즘의 수행을 담당하는 SAAlgorithm 컴포넌트, 채널 추정과 다중 안테나 경로 보정(Calibration) 등을 담당하는 SASynchronization 컴포넌트 등의 세가지 컴포넌트로 구성된다. 본 논문에서는 스마트 안테나 API를 소개하고, 이를 이용하여 차세대 통신 시스템의 필수 요소로 자리잡고 있는 스마트 안테나 시스템의 표준 모델을 제시한다. 또한, 본 논문에서 제안하는 스마트 안테나 API는 SDR 관련 국제 기구인 SDR 포럼을 통해 Object Management Group(OMG)의 표준으로 상정할 것을 목표로 하고 있다.

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.321-324
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband (UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate (BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

  • PDF

Performance of UWB Systems using Spatial Diversity in Multi-User Environments (다중사용자 환경에서 공간적인 다이버시티를 이용하는 초광대역 통신시스템의 성능 비교분석)

  • Baek, Sun-Young;An, Jin-Young;Lee, Sung-Sin;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2121-2126
    • /
    • 2007
  • In this paper, the performance improvement of ultra-wideband(UWB) communications system to achieve high-data-rate using spatial diversity provided by multiple receive antennas is investigated. We derive the expression for the received SINR after spatially combining through multiple receive antennas and evaluate the bit error rate(BER) performance by numerical simulation. We also compare the performance results in the case of 2PPM systems with the theoretical performance results in the case of 2PAM THMA UWB systems. The impacts of spatial diversity on the performance of 2PPM and 2PAM THMA UWB systems are analyzed. It is shown that the BER performance is improved as the number of receive antennas increases. Also, it is observed that in the presence of multiple user interference signals, the performance of 2PAM THMA UWB systems is considerably superior to that of 2PPM THMA UWB systems.

Outage Performance of a Multi-Cell MIMO-OFDM Broadcast Transmission Method (다중-셀 다중 안테나 직교 주파수분할 다중화 기반 브로드캐스트 전송 방식의 아웃티지 성능)

  • Park, Jae-Cheol;Kim, Yun-Hee;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.720-726
    • /
    • 2008
  • In this paper, we propose a multi-cell cooperation method for broadcast packet data services in the orthogonal frequency division multiplexing (OFDM)-based cellular system with multiple transmit antennas. In the proposed method, to transmit two streams of spatially demultiplexed or transmit diversity coded symbols over a number of transmit antennas, we divide a coded packet into multiple subparts to which different cell groups and antenna pairs are assigned. The proposed method enhances the diversity order by transforming the channel frequency responses of two symbol streams in each subpart of the broadcast packet. The increase in diversity of the proposed method is shown with the outage probability under various configurations.

Design of Low-Density Parity-Check Codes for Multiple-Input Multiple-Output Systems (Multiple-Input Multiple-output system을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Chae, Hyun-Do;Han, In-Duk;Heo, Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.587-593
    • /
    • 2010
  • In this paper we design an irregular low-density parity-check (LDPC) code for multiple-input multiple-output (MIMO) system, using a simple extrinsic information transfer (EXIT) chart method. The MIMO systems considered are optimal maximum a posteriori probability (MAP) detector. The MIMO detector and the LDPC decoder exchange soft information and form a turbo iterative receiver. The EXIT charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the MIMO detector. It is shown that the performance of the designed LDPC code is better than that of conventional LDPC code which was optimized for either the Additive White Gaussian Noise (AWGN) channel or the MIMO channel.

Design and Performance of Low Complexity Multiple Antenna Relay Transmission Based on STBC-OFDM (시공간 부호화 직교 주파수분할 다중화 기반 저 복잡도 다중 안테나 릴레이 전송 방식 설계 및 성능)

  • Lee, Ji-Hye;Park, Jae-Cheol;Wang, Jin-Soo;Lee, Seong-Ro;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11C
    • /
    • pp.673-681
    • /
    • 2011
  • In this paper, we design multiple antenna relay transmission schemes of low complexity to enhance the spatial diversity in orthogonal frequency division multiplexing (OFDM) systems. The relay scheme underlined, can provide space time block coding (STBC) of OFDM signals in the time domain without IFFT and FFT operations with much reduced complexity. In this paper, we modify the conventional low-complexity STBC-OFDM relaying scheme to be compatible to the existing OFDM systems. In addition, we extend the proposed scheme for multiple antenna relays and provide performance enhancement strategies according to the channel quality information available at the relay. The proposed scheme is shown to improve the diversity and thereby to reduce the outage probability and coded bit error rate. Therefore, the proposed scheme will be promising for service quality improvement or coverage extension based on OFDM like wireless LANs and maritime communications.

Link-level Performance Verification of the Multiple Antenna Systems - MIMO OFDM vs. Smart Antenna OFDM (OFDM 기반 다중 안테나 시스템의 링크레벨 성능검증 - MIMO OFDM vs. Smart Antenna OFDM)

  • Park Sung-Ho;Kim Kyoo-Hyun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.563-574
    • /
    • 2006
  • This paper implements SCM(Spatial Channel Model), a kind of ray-tracing method which has characteristics similar to realistic wave propagation environments, for link-level performance analysis of OFDM(Orthogonal Frequency Division Multiplexing) based multiple antenna systems. The SCM is proposed by 3GPP & 3GPP2 Spatial Channel AHG(Ad-hoc Group) for system-level performance validation. In this paper, we modify the system level parameters and channel coefficient of SCM to compare the link-level performances of OFDM based multiple antenna systems. Through computer simulations, we manifest the implemented SCM channel characteristics. We analyze a realistic link-level performance of OFDM based conventional MIMO(Multiple Input Multiple Output) system and smart antenna system in the implemented channel. We also include the link-level performance of OFDM based multiple antenna systems in I-METRA(Intelligent Multi Element Transmit and Receive Antenna) and independent channel environments with the same system parameters. We suggest appropriate multiple antenna system in the given environment by comparing the link-level performance in the spatial channels that have different channel correlation values.

Performance Analysis of Multiple-Antenna Receiver in Cloud Transmission System for Building Single Frequency Networks (단일주파수방송망 구축을 위한 클라우드 전송 시스템에서의 다중 안테나 수신 성능 분석)

  • Gwak, Gye Seok;Kim, Jaekil;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.474-480
    • /
    • 2014
  • In this paper, we propose a study for the next generation terrestrial broadcasting technology based on SFN(Single Frequency Networks), which applies multiple receiving antenna to improve receiving performance of cloud transmission system. By applying multiple receiving antenna, the received broadcast signals at the boundary of different SFN broadcasting area could be modelled by distributed MIMO system. Due to the interference cancellation effect of the MIMO detector, the proposed scheme could suppress the adjacent area interference more efficiently compared to the single receiving antenna case. Simulation results show that receiving performance can be improved dramatically in overlapping area of SFN by applying multiple antenna receivers in cloud transmission system.