• Title/Summary/Keyword: 다중 센서 시스템

Search Result 522, Processing Time 0.03 seconds

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.

A channel parameter-based weighting method for performance improvement of underwater acoustic communication system using single vector sensor (단일 벡터센서의 수중음향 통신 시스템 성능 향상을 위한 채널 파라미터 기반 가중 방법)

  • Kang-Hoon, Choi;Jee Woong, Choi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.610-620
    • /
    • 2022
  • An acoustic vector sensor can simultaneously receive vector quantities, such as particle velocity and acceleration, as well as acoustic pressure at one location, and thus it can be used as a single input multiple output receiver in underwater acoustic communication systems. On the other hand, vector signals received by a single vector sensor have different channel characteristics due to the azimuth angle between the source and receiver and the difference in propagation angle of multipath in each component, producing different communication performances. In this paper, we propose a channel parameter-based weighting method to improve the performance of an acoustic communication system using a single vector sensor. To verify the proposed method, we used communication data collected from the experiment conducted during the KOREX-17 (Korea Reverberation Experiment). For communication demodulation, block-based time reversal technique which is robust against time-varying channels were utilized. Finally, the communication results showed that the effectiveness of the channel parameter-based weighting method for the underwater communication system using a single vector sensor was verified.

Multi -Query Processing using the Grid Structure in Wireless Sensor Networks (무선 센서 네트워크 환경에서 그리드 구조를 이용한 다중 질의 처리 기법)

  • Kang, Gwang-Goo;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1086-1090
    • /
    • 2010
  • In recent, as many applications of sensor networks increase, various techniques have been studied to efficiently operate network systems. The query optimization scheme that is one of such techniques has been studied to reduce the data transmission cost. The data transmission is of great importance to the energy consumption of sensor networks. In this paper, we propose an energy-efficient multiple queries processing scheme by sharing sensor readings for multiple queries, when they are occurred in sensor networks. The proposed scheme reduces unnecessary data transmissions among the sensor nodes by intuitively identifying their locations using the grid structure. It also efficiently shares the data by recognizing the redundant regions of sensor nodes. In order to show the superiority of the proposed scheme, we compare it with the existing scheme in various experiments. As the result, the proposed scheme reduces about 65% energy consumption over the existing scheme.

Image Fusion of High Resolution SAR and Optical Image Using High Frequency Information (고해상도 SAR와 광학영상의 고주파 정보를 이용한 다중센서 융합)

  • Byun, Young-Gi;Chae, Tae-Byeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.75-86
    • /
    • 2012
  • Synthetic Aperture Radar(SAR) imaging system is independent of solar illumination and weather conditions; however, SAR image is difficult to interpret as compared with optical images. It has been increased interest in multi-sensor fusion technique which can improve the interpretability of $SAR^{\circ\circ}$ images by fusing the spectral information from multispectral(MS) image. In this paper, a multi-sensor fusion method based on high-frequency extraction process using Fast Fourier Transform(FFT) and outlier elimination process is proposed, which maintain the spectral content of the original MS image while retaining the spatial detail of the high-resolution SAR image. We used TerraSAR-X which is constructed on the same X-band SAR system as KOMPSAT-5 and KOMPSAT-2 MS image as the test data set to evaluate the proposed method. In order to evaluate the efficiency of the proposed method, the fusion result was compared visually and quantitatively with the result obtained using existing fusion algorithms. The evaluation results showed that the proposed image fusion method achieved successful results in the fusion of SAR and MS image compared with the existing fusion algorithms.

Sensor Redundancy Management using Kalman Filter for a Duplex Filght Control System (칼만필터를 이용한 2중 비행제어시스템의 센서 다중화 관리)

  • Lee, Seung-Hyun;Lee, Jang-Ho;Kim, Eung-Tae;Sung, Ki-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents a duplex flight control system of design concepts and sensor fault detection algorithm using Kalman Filter. The algorithm was verified to use HILS that is composed of two FCCs, motion table, visualization system, cockpit, and flight model computer. The FCC was developed to be able to mount on small aircraft.

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Strapdown Passive Localization Sensor Design for Multi-robot Applications (다중 자율이동로봇 응용을 위한 스트랩다운형 피동 측위 센서 설계)

  • Suh, Ui-Suk;Jung, Young-Kwang;Kim, Eun-Chong;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1381-1382
    • /
    • 2015
  • 본 논문에서는 초음파 수신기 어레이 및 아날로그 신호처리부로 구성된 스트랩다운 측위센서를 이용하여 특정 위치에 장착되어 있는 송신기와 로봇 간 상대위치를 측정할 수 있는 새로운 형태의 자율주행로봇 보조항법 시스템을 제안한다. 이를 이용하여 상태변수 간의 기하학적 상관관계를 활용하여 십자형으로 배열된 다중센서 기반 피동 위치추정 필터 구현에 사용되는 설계변수의 불완전성을 보상하는 방법을 제안한다. 모의실험을 통해 제안한 방법의 유용성을 검증한다.

  • PDF

Rao-Blackwellized Multiple Model Particle Filter Data Fusion algorithm (Rao-Blackwellized Multiple Model Particle Filter자료융합 알고리즘)

  • Kim, Do-Hyeung
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.556-561
    • /
    • 2011
  • It is generally known that particle filters can produce consistent target tracking performance in comparison to the Kalman filter for non-linear and non-Gaussian systems. In this paper, I propose a Rao-Blackwellized multiple model particle filter(RBMMPF) to enhance computational efficiency of the particle filters as well as to reduce sensitivity of modeling. Despite that the Rao-Blackwellized particle filter needs less particles than general particle filter, it has a similar tracking performance with a less computational load. Comparison results for performance is listed for the using single sensor information RBMMPF and using multisensor data fusion RBMMPF.

A Low-Cost Vision-Based Event Detection Method Using Multiple Exposure (다중 노출을 이용한 저비용 영상 이벤트 검출 방법)

  • Lim, Yu-Bin;Yi, Kang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.947-950
    • /
    • 2014
  • CCTV와 차량용 블랙박스 등의 영상기반 감시장비들로 사회안전망이 구축되고 있다. 하지만 디지털 영상 획득 센서는 실세계의 다이나믹 레인지를 온전히 감지하지 못한다는 한계점을 가지고 있는데 이로 인해 역광과 같은 특정 조명 조건하에서는 발생하는 움직임들을 감지하지 못하는 문제가 있다. 이러한 문제점을 해결하기 위해 종래에는 HDR 이미지를 사용하는데, 움직임이 많은 영상에 적용하기 어렵다. 별도의 WDR 이미지 센서를 사용할 수도 있으나 가격이 비싸고 영상처리가 복잡하다는 단점이 있다. 따라서, 본 논문에서는 프레임을 목표 다이내믹 레인지별로 그룹핑하고 프레임 그룹별로 노출시간을 달리하는 다중노출 방식을 제안한다. 이 방식에 따르면 어떤 조명 조건 상황에서도 물체의 변화를 모두 검출할 수 있으며 기존 이미지 센서와 영상 감지 시스템을 그대로 사용하기에 저비용으로 구현이 가능하다는 장점이 있다.