In order to determine the nitrogen supplying capabilities (NSC) of corn fields, 47 field experiments were performed in Pennsylvania over 3 year from 1986 and NSCs were estimated by the regression analysis with chemical properties and soil attributes. Although the content of $NO_3-N$ in soil showed the best correlation with NSC ($R^2=0.518$), the standardized partial regression coefficient of $NO_3-N$ for NSC was 0.52, with some variations over the years. This value was slightly higher than those of the other properties which ranged from 0.001 to 0.351. Multiple linear regression with soil attributes for the evaluation of NSC was better than simple regression with $NO_3-N$. The coefficient of determination ($R^2$) for the evaluation of NSC was gradually increased; 0.599 with selected chemical properties, 0.698 with quantitative attributes(chemical properties and depth of Ap horizon), and 0.839 with quantitative and selected qualitative soil attributes. Consequently, in order to evaluate NSC, analysis by multiple linear regression with soil attributes was more reliable and better model than by the simple regression model.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.139-139
/
2019
지구 온난화 및 기후변화로 인해 비롯된 전 지구적인 기온 상승은 가뭄, 폭염, 한파 등의 이상 기후 현상을 야기하여 인류의 생존을 위협하는 환경 문제로 대두되고 있다. 이와 같은 기후변화 및 이상기후 현상을 이해하고 파악하기 위해서는 정확하고 상세한 기온 정보가 필수적이다. 우리나라는 기상청에서 전국 590개소의 기상관측장비로 기온 정보를 생산하고 있지만 산림이 약 70%를 차지하는 복잡한 지형을 가지고 있어 지상관측밀도의 공간적 제약이 발생해 상세하고 균일한 기온 정보 생산에 제약이 있다. 이러한 단점을 극복하기 위해 본 연구에서는 위성으로 측정한 지표면 온도(Land Surface Temperature, LST) 자료와 다중선형회귀모형(Multiple Linear Regression Model)을 활용해 두 자료간의 상관관계를 파악하고 지상기온을 예측하고자 한다. 위성자료로 Terra 및 Aqua MODIS 위성의 1000m 공간해상도를 가진 일별 LST자료 MOD11A1, MYD11A1의 Daytime 자료를 각각 2000년부터 2018년까지 총 19년의 기간에 대해 구축하였으며, 전국 92개의 기상청 관측소로부터 최고, 최저 기온 자료를 동 기간에 대해 구축하였다. LST를 이용한 이상기온 예측 알고리즘은 python을 이용해 구현하였으며 예측 결과는 실제 기온 자료를 통해 검증하였다. 또한, 예측 기온 자료의 연대별, 순별(상, 중, 하순) 분석을 실시하고, 2018년 극한 폭염 및 한파(2017년 12월~2018년 2월)의 예측 가능성을 검토하여 연구 결과에 대한 다양한 활용방안을 제시하고자 한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.6
/
pp.219-225
/
2019
There is a problem with the existing method of selecting the difficulty levels of Hanja characters. Some Hanja characters selected by the existing methods are different from Sino-Korean words used in real life and it is impossible to know how many times the Hanja characters are used. To solve this problem, we measure the difficulty of Hanja characters using the multiple regression analysis with the frequency as the features. Based on the elementary textbooks, FWS and FHU are counted. A questionnaire is written using the two frequencies and stroke together to answer the appropriate timing of learning the Hanja characters and use them as target variables for regression. Use stepwise regression to select the appropriate features and perform multiple linear regression. The R2 score of the model was 0.1105 and the RMSE was 0.1105.
Proceedings of the Korean Institute of Building Construction Conference
/
2019.11a
/
pp.38-39
/
2019
Environmental problems caused by GHG emitted by various industries are emerging around the world, and accordingly, relevant regulations are being applied by countries around the world. Korea is operating a carbon credit system that trades GHG in industry for money, which is expected to be applied to the construction industry. In addition, construction equipment using fossil fuels accounts for the largest portion of $CO_2$ emissions in the construction industry, and the importance of $CO_2$ reduction and prediction is increasing. However, there is a lack of data on the directly measured $CO_2$ emissions of construction equipment and there is no accurate methodology for measuring methods. Therefore, in this study, independent variables were derived based on the $CO_2$ emission data. In addition, multiple linear regression is performed for each independent variable to derive a predictive model of carbon dioxide emission by work type of construction equipment. It is expected that the construction process plan based on environmental factors in the construction industry can be established in the future.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.395-397
/
1999
디지털 카메라에 의해 획득된 RGB 칼라 신호는 디지털 카메라의 하드웨어적인 특성에 따라 서로 다른 값을 가지는 장비 의존적(Device Dependent) 특성을 가지며, 칼라 운영 시스템(CMS; Color Management System)이 프로파일 연결 칼라 공간(PCS:Profile Connection Space)으로 사용하는 CIE XYZ 칼라 공간에 대해 비선형적인 특성을 가진다. 본 논문에서는 디지털 카메라의 RGB 칼라 신호를 장비 독립적(Device Independent)인 CIE XYZ 칼라 공간으로 변환하는 변환 행렬을 구하는 방법을 제안한다. 변환 행렬은 비선형 다항식을 이용하여 3$\times$m의 변환 행렬을 구하고, 실험에 사용되는 칼라 샘플의 수에 따른 일반화(Generalization) 성능을 평가한다.
풍속은 다른 기상요소들보다 순간 변동이 심하고 국지성이 강하여 수치 예보 모델만으로 예측의 정확성을 높이기가 어렵다. 기상청의 단기 풍속 예보는 전 지구적 통합 예보모델인 UM(Unified Model)의 예측값에 MOS(Model Output Statictics)를 통한 보정을 수행하며, 보정식의 생성에 다중선형회귀분석 방법을 사용한다. 본 연구자는 유전프로그래밍(Genetic Programming)을 이용한 비선형 회귀분석 기반의 보정식 생성을 통하여 이를 개선한 바 있는데, 본 연구에서는 보다 향상된 성능을 얻기 위하여 GP 기법 측면에서 Automatically Defined Functions과 다군집(Multiple Populations) 수행을 통해 성능을 높이고자 한다.
Kim, Seung-Woo;Lee, Pyeong-Yeon;Han, Dong-Ho;Kim, Jong-hoon
Journal of IKEEE
/
v.23
no.1
/
pp.1-8
/
2019
In this paper, the electrical characteristics with various C-rates are tested with a high power series battery pack comprised of 18650 cylindrical nickel cobalt aluminum(NCA) lithium-ion battery. The electrical characteristics of discharge capacity test with 14S1P battery pack and electric vehicle (EV) cycle test with 4S1P battery pack are compared and analyzed by the various of C-rates. Multiple linear regression is used to estimate voltage imbalance of 14S1P and 4S1P battery packs with various C-rates based on experimental data. The estimation accuracy is evaluated by root mean square error(RMSE) to validate multiple linear regression. The result of this paper is contributed that to use for estimating the voltage imbalance of discharge capacity test with 14S1P battery pack using multiple linear regression better than to use the voltage imbalance of EV cycle with 4S1P battery pack.
This study derives the factors which affect the occurrence of arson from statistical data (population, economic, and social factors) by multiple regression analysis. Multiple regression analysis applies to 4 forms of functions, linear functions, semi-log functions, inverse log functions, and dual log functions. Also analysis respectively functions by using the stepwise progress which considered selection and deletion of the independent variable factors by each steps. In order to solve a problem of multiple regression analysis, autocorrelation and multicollinearity, Variance Inflation Factor (VIF) and the Durbin-Watson coefficient were considered. Through the analysis, the optimal model was determined by adjusted Rsquared which means statistical significance used determination, Adjusted R-squared of linear function is scored 0.935 (93.5%), the highest of the 4 forms of function, and so linear function is the optimal model in this study. Then interpretation to the optimal model is conducted. As a result of the analysis, the factors affecting the arson were resulted in lines, the incidence of crime (0.829), the general divorce rate (0.151), the financial autonomy rate (0.149), and the consumer price index (0.099).
Recent 22-year (1981-2002) meteorological data of 58 Korea Meteorological Adminstration (KMA) station were analyzed to investigate spatial and temporal variation of surface air temperature (SAT) and ground surface temperature (GST) in Korea. Based on the KMA data, multiple linear regression (MLR) models, having two regression variables of latitude and altitude, were presented to predict mean surface air temperature (MSAT) and mean ground surface temperature (MGST). Both models showed a high accuracy of prediction with $R^2$ values of 0.92 and 0.94, respectively. The prediction of MGST is particularly important in the areas of geothermal energy utilization, since it is a critical parameter of input for designing the ground source heat pump system. Thus, due to a good performance of the MGST regression model, it is expected that the model can be a useful tool for preliminary evaluation of MGST in the area of interest with no reliable data. By a simple linear regression, temporal variation of SAT was analyzed to examine long-term increase of SAT due to the global warming and the urbanization effect. All of the KMA stations except one showed an increasing trend of SAT with a range between 0.005 and $0.088^{\circ}C/yr$ and a mean of $0.043^{\circ}C/yr$. In terms of meteorological factors controlling variation of GST, the effects of solar radiation, terrestrial radiation, precipitation, and snow cover were also discussed based on quantitative and qualitative analysis of the meteorological data.
To estimate headwater stream temperature with seasonal variations, we analyzed precipitation, runoff and air temperature in experimental forest of Kangwon National University, Gangwon-do (2017~2018 years). The daily mean value of headwater stream temperature for spring was 6.9~17.7℃ and correlated with air temperature, that for summer and fall were 12.2~26.3℃ and 3.6~19.3℃, correlated with air temperature and runoff. Based on seasonal variations, we applied for stepwise multiple linear regression analyses to estimate headwater stream temperature with seasonal variations. The equations were headwater stream temperature(WT)spring=(0.553×Air temperature)+(0.086×Runoff)+4.145 (R2=0.505; p<0.01), WTsummer=(0.756×Air temperature)+(-0.072×Runoff)+2.670 (R2=0.510; p<0.01), and WTfall=(0.738×Air temperature)+(0.028×Precipitation)+2.660 (R2=0.844; p<0.01). The coefficient of determination (R2) was greater than when it was estimated by air temperature in all seasons and progressively increased from spring to winter. Therefore, we indicated difference on estimated magnitude of stepwise multiple linear regression, due to effects on headwater stream temperature of different environmental factors with seasonal variations. Furthermore, temporal factors with spatial characteristics (e.g., river versus headwater stream) could be recommended for estimating headwater stream temperature.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.