The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.5
/
pp.171-177
/
2018
Recently there are many image datasets which has variety of data class and point to extract general features. But in order to this variety data class and point, deep learning model trained this dataset has not good performance in heterogeneous data feature local area. In this paper, we propose the structure which use sub-category and openset object detection methods to train more robust model, named multi-branch tree using ASSL. By using this structure, we can have more robust object detection deep learning model in heterogeneous data feature environment.
3D 사람 자세 추정 기술은 다양한 응용 분야에서의 높은 활용성으로 인해 대량의 학습 데이터가 수집되어 딥러닝 모델 연구가 진행되어 온 반면, 동물 자세 추정의 경우 3D 동물 데이터의 부족으로 인해 관련 연구는 극히 미진하다. 본 연구는 동물 자세 추정을 위한 예비연구로서, 3D 학습 데이터가 없는 상황에서 단일 이미지로부터 3D 사람 자세를 추정하는 딥러닝 기법을 제안한다. 이를 위하여 사전 훈련된 다중 시점 학습모델을 사용하여 2D 자세 데이터로부터 가상의 다중 시점 데이터를 생성하여 훈련하는 연역적 학습 기반 교사-학생 모델을 구성하였다. 또한, 키포인트 깊이 정보 대신 2D 이미지로부터 레이블링 된 순서 깊이 정보에 기반한 손실함수를 적용하였다. 제안된 모델이 동물데이터에서 적용 가능한지 평가하기 위해 실험은 사람 데이터를 사용하여 이루어졌다. 실험 결과는 제안된 방법이 기존 단안 이미지 기반 모델보다 3D 자세 추정의 성능을 개선함을 보여준다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.285-286
/
2021
본 논문에서는 변환 학습을 기반으로 한 다중 클래스 이미지 장면 분류 방법을 제안하도록 한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련 된 네트워크 모델을 사용하여 다중 클래스의 자연 장면 이미지를 분류하였다. 실험에서 최적화 된 ResNet 모델은 Kaggle의 Intel Image Classification 데이터 세트에 분류되어 우수한 결과를 얻었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.3-8
/
2023
데이터 증강은 인공지능 모델의 학습에서 필요한 데이터의 양이 적거나 편향되어 있는 경우, 이를 보완하여 모델의 성능을 높이는 데 도움이 된다. 이미지와는 달리 자연어의 데이터 증강은 문맥이나 문법적 구조와 같은 특징을 고려해야 하기 때문에, 데이터 증강에 많은 인적자원이 소비된다. 본 연구에서는 복수의 대규모 언어 모델을 사용하여 입력 문장과 제어 조건으로 프롬프트를 구성하는 데 최소한의 인적 자원을 활용한 의미적으로 유사한 문장을 생성하는 방법을 제안한다. 또한, 대규모 언어 모델을 단독으로 사용하는 것만이 아닌 병렬 및 순차적 구조로 구성하여 데이터 증강의 효과를 높이는 방법을 제안한다. 대규모 언어 모델로 생성된 데이터의 유효성을 검증하기 위해 동일한 개수의 원본 훈련 데이터와 증강된 데이터를 한국어 모델인 KcBERT로 다중 클래스 분류를 수행하였을 때의 성능을 비교하였다. 다중 대규모 언어 모델을 사용하여 데이터 증강을 수행하였을 때, 모델의 구조와 관계없이 증강된 데이터는 원본 데이터만을 사용하였을 때보다 높거나 그에 준하는 정확도를 보였다. 병렬 구조의 다중 대규모 언어 모델을 사용하여 400개의 원본 데이터를 증강하였을 때에는, 원본 데이터의 최고 성능인 0.997과 0.017의 성능 차이를 보이며 거의 유사한 학습 효과를 낼 수 있음을 보였다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.08a
/
pp.60-64
/
1998
음성인식 시스템의 실용화 과정에서 훈련환경과 테스트 환경의 불일치로 인한 인식성능의 저하는 반드시 극복되어야 할 문제이다. 본 논문에서는 잡음 tR인 입력음성의 비음성구간에서 잡음레벨을 추정하여 음성 스펙트럼에서 추정된 잡음레벨을 빼는 스펙트럼 차감법고 스펙트럼 영역에서 미리 정해진 마스킹 레벨보다 낮은 에너지 값을 마스킹 레벨로 올려주는 잡음 마스킹을 함께 사용함으로써 훈련 환경과 테스트환경의 불일치를 줄이는 방법을 제안한다. 그리고 복수의 마스킹 레벨에 대한 모델들을 미리 만들어 두고 추정된 잡음 레벨에 따라 적합한 마스킹 레벨의 보델을 사용하여 인식을 수해?는 다중 모델 방법을 적용하였다. 자동차 소음환경에서 두 가지 마스킹 레벨에 대한 모델을 이용한 화자독립고립단어 인식 실험을 통하여 본 논문에서 제안한 방식은 정차중 무시동 환경에서 95.8%, 정차중 시동 환경에서 95.6%, 한적한 도로환경에서 92.8%, 복잡한 시내도로 환경에서 89.6%, 고속도로 환경에서 74.4%의 인식성능을 나타내었으며, 평균 90.7%의 성능을 얻을 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.551-552
/
2021
In this paper, we present a multi-class image scene classification method based on transformation learning. ImageNet classifies multiple classes of natural scene images by relying on pre-trained network models on large image datasets. In the experiment, we obtained excellent results by classifying the optimized ResNet model on Kaggle's Intel Image Classification data set.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.249-251
/
2016
다중 화자 대화 시스템에서, 시스템의 입장에서 어느 시점에 참여해야하는지를 아는 것은 중요하다. 이러한 참여 모델을 구축함에 있어서 본 연구에서는 다수의 화자가 대화에 참여하는 영화 대본으로 구축된 MovieDic 말뭉치를 사용하였다. 구축에 필요한 자질로써 의문사, 호칭, 명사, 어휘 등을 사용하였고, 훈련 알고리즘으로는 Maximum Entropy Classifier를 사용하였다. 실험 결과 53.34%의 정확도를 기록하였으며, 맥락 자질의 추가로 정확도 개선을 기대할 수 있다.
It is hard to prepare sufficient training data for speech emotion recognition due to the difficulty of emotion labeling. In this paper, we apply transfer learning with large-scale training data for speech recognition on a transformer-based model to improve the performance of speech emotion recognition. In addition, we propose a method to utilize context information without decoding by multi-task learning with speech recognition. According to the speech emotion recognition experiments using the IEMOCAP dataset, our model achieves a weighted accuracy of 70.6 % and an unweighted accuracy of 71.6 %, which shows that the proposed method is effective in improving the performance of speech emotion recognition.
Edward Dwijayanto Cahyadi;Hans Nathaniel Hadi Soesilo;Mi-Hwa Song
The Journal of the Convergence on Culture Technology
/
v.10
no.1
/
pp.617-623
/
2024
Identifying emotions through speech poses a significant challenge due to the complex relationship between language and emotions. Our paper aims to take on this challenge by employing feature engineering to identify emotions in speech through a multimodal classification task involving both speech and text data. We evaluated two classifiers-Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM)-both integrated with a BERT-based pre-trained model. Our assessment covers various performance metrics (accuracy, F-score, precision, and recall) across different experimental setups). The findings highlight the impressive proficiency of two models in accurately discerning emotions from both text and speech data.
Journal of the Korea Institute of Military Science and Technology
/
v.21
no.6
/
pp.865-876
/
2018
This study focuses on the operating requirements of multi-resolution modeling(MRM) in training war-game model and proposes solutions for major issues of multi-resolution interoperation between Combat21 model and tank multi-purpose simulator(TMPS). We study the operating requirements of MRM through interviews with defense M&S experts and literature surveys and report the various issues that could occur with low-resolution model Combat21 and high-resolution model TMPS linked, for example, when to switch objects, what information to exchange, what format to switch to, and how to match data resolutions. This study also addresses the purpose and concept of training using multi-resolution interoperation, role of each model included in multi-resolution interoperation, and issue of matching damage assessments when interoperated between models with different resolutions. This study will provide the common goals and directions of MRM research to MRM researchers, defense modeling & simulation organizations and practitioners.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.