• 제목/요약/키워드: 다중 모달 감정 인식

검색결과 4건 처리시간 0.024초

가상 인간의 감정 표현 인식을 위한 비언어적 다중모달 영향 분석 (Impact Analysis of nonverbal multimodals for recognition of emotion expressed virtual humans)

  • 김진옥
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.9-19
    • /
    • 2012
  • 디지털 콘텐츠에서 HCI로 활용되는 가상 인간은 얼굴 표정과 신체자세와 같은 모달을 이용하여 다양한 감정을 표현하지만 비언어적 다중모달의 조합에 대한 연구는 많지 않다. 감정을 표현하는 가상 인간을 제작하려면 계산 엔진 모델은 얼굴 표정과 신체자세와 같은 비언어적 모달의 조합이 사용자에 의해 어떻게 인식되는지를 고려해야 하기 때문에 본 연구는 가상 인간의 감정 표현 디자인에 필요한 비언어적 다중모달의 영향을 분석하여 제시한다. 먼저 가상 인간에 대한 다중모달 별 감정 인식을 평가하여 다른 모달간의 상대적 영향성을 분석하였다. 그리고 일치하는 얼굴과 자세 모달을 통해 기본 감정 및 정서가와 활성화 인식에 대한 영향을 평가하며 감정이 불일치하는 다중모달을 통해 일상생활에서 빈번하게 드러나는 중첩된 감정의 인식 정도를 관측하였다. 실험 결과, 가상 인간의 얼굴과 신체자세의 표정이 일치하면 감정 인식이 용이하며, 얼굴 표정으로 감정 카테고리를 판별하지만 감정의 활성화 차원 판단에는 자세 모달리티가 선호됨을 확인하였다. 본 연구 결과는 감정을 드러내는 가상 인간의 행동 동기화 및 애니메이션 엔진 시스템 구현에 활용할 수 있다.

음성 데이터의 내재된 감정인식을 위한 다중 감정 회귀 모델 (Multi-Emotion Regression Model for Recognizing Inherent Emotions in Speech Data)

  • 이명호;임명진;신주현
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.81-88
    • /
    • 2023
  • 최근 코로나19로 인한 비대면 서비스의 확산으로 온라인을 통한 소통이 증가하고 있다. 비대면 상황에서는 텍스트나 음성, 이미지 등의 모달리티를 통해 상대방의 의견이나 감정을 인식하고 있다. 현재 다양한 모달리티를 결합한 멀티모달 감정인식에 관한 연구가 활발하게 진행되고 있다. 그중 음성 데이터를 활용한 감정인식은 음향 및 언어정보를 통해 감정을 이해하는 수단으로 주목하고 있으나 대부분 단일한 음성 특징값으로 감정을 인식하고 있다. 하지만 대화문에는 다양한 감정이 복합적으로 존재하기 때문에 다중 감정을 인식하는 방법이 필요하다. 따라서 본 논문에서는 복합적으로 존재하는 내재된 감정인식을 위해 음성 데이터를 전처리한 후 특징 벡터를 추출하고 시간의 흐름을 고려한 다중 감정 회귀 모델을 제안한다.

통합 CNN, LSTM, 및 BERT 모델 기반의 음성 및 텍스트 다중 모달 감정 인식 연구 (Enhancing Multimodal Emotion Recognition in Speech and Text with Integrated CNN, LSTM, and BERT Models)

  • 에드워드 카야디;한스 나타니엘 하디 수실로;송미화
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.617-623
    • /
    • 2024
  • 언어와 감정 사이의 복잡한 관계의 특징을 보이며, 우리의 말을 통해 감정을 식별하는 것은 중요한 과제로 인식된다. 이 연구는 음성 및 텍스트 데이터를 모두 포함하는 다중 모드 분류 작업을 통해 음성 언어의 감정을 식별하기 위해 속성 엔지니어링을 사용하여 이러한 과제를 해결하는 것을 목표로 한다. CNN(Convolutional Neural Networks)과 LSTM(Long Short-Term Memory)이라는 두 가지 분류기를 BERT 기반 사전 훈련된 모델과 통합하여 평가하였다. 논문에서 평가는 다양한 실험 설정 전반에 걸쳐 다양한 성능 지표(정확도, F-점수, 정밀도 및 재현율)를 다룬다. 이번 연구 결과는 텍스트와 음성 데이터 모두에서 감정을 정확하게 식별하는 두 모델의 뛰어난 능력을 보인다.

웨어러블 센서를 이용한 라이프로그 데이터 자동 감정 태깅 (Automated Emotional Tagging of Lifelog Data with Wearable Sensors)

  • 박경화;김병희;김은솔;조휘열;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권6호
    • /
    • pp.386-391
    • /
    • 2017
  • 본 논문에서는 실생활에서 수집한 웨어러블 센서 데이터에서 사용자의 체험 기반 감정 태그정보를 자동으로 부여하는 시스템을 제안한다. 사용자 본인의 감정과 사용자가 보고 듣는 정보를 종합적으로 고려하여 네 가지의 감정 태그를 정의한다. 직접 수집한 웨어러블 센서 데이터를 중심으로 기존 감성컴퓨팅 연구를 통해 알려진 보조 정보를 결합하여, 다중 센서 데이터를 입력으로 하고 감정 태그를 구분하는 머신러닝 기반 분류 시스템을 학습하였다. 다중 모달리티 기반 감정 태깅 시스템의 유용성을 보이기 위해, 기존의 단일 모달리티 기반의 감정 인식 접근법과의 정량적, 정성적 비교를 한다.