• Title/Summary/Keyword: 다중 레이블 학습

Search Result 38, Processing Time 0.024 seconds

Applying Coarse-to-Fine Curriculum Learning Mechanism to the multi-label classification task (다중 레이블 분류 작업에서의 Coarse-to-Fine Curriculum Learning 메카니즘 적용 방안)

  • Kong, Heesan;Park, Jaehun;Kim, Kwangsu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.29-30
    • /
    • 2022
  • Curriculum learning은 딥러닝의 성능을 향상시키기 위해 사람의 학습 과정과 유사하게 일종의 'curriculum'을 도입해 모델을 학습시키는 방법이다. 대부분의 연구는 학습 데이터 중 개별 샘플의 난이도를 기반으로 점진적으로 모델을 학습시키는 방안에 중점을 두고 있다. 그러나, coarse-to-fine 메카니즘은 데이터의 난이도보다 학습에 사용되는 class의 유사도가 더욱 중요하다고 주장하며, 여러 난이도의 auxiliary task를 차례로 학습하는 방법을 제안했다. 그러나, 이 방법은 혼동행렬 기반으로 class의 유사성을 판단해 auxiliary task를 생성함으로 다중 레이블 분류에는 적용하기 어렵다는 한계점이 있다. 따라서, 본 논문에서는 multi-label 환경에서 multi-class와 binary task를 생성하는 방법을 제안해 coarse-to-fine 메카니즘 적용을 위한 방안을 제시하고, 그 결과를 분석한다.

  • PDF

A Performance Comparison of Multi-Label Classification Methods for Protein Subcellular Localization Prediction (단백질의 세포내 위치 예측을 위한 다중레이블 분류 방법의 성능 비교)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.992-999
    • /
    • 2014
  • This paper presents an extensive experimental comparison of a variety of multi-label learning methods for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. We compared several methods from three categories of multi-label classification algorithms: algorithm adaptation, problem transformation, and meta learning. Experimental results are analyzed using 12 multi-label evaluation measures to assess the behavior of the methods from a variety of view-points. We also use a new summarization measure to find the best performing method. Experimental results show that the best performing methods are power-set method pruning a infrequently occurring subsets of labels and classifier chains modeling relevant labels with an additional feature. futhermore, ensembles of many classifiers of these methods enhance the performance further. The recommendation from this study is that the correlation of subcellular locations is an effective clue for classification, this is because the subcellular locations of proteins performing certain biological function are not independent but correlated.

Recognition of Multi Label Fashion Styles based on Transfer Learning and Graph Convolution Network (전이학습과 그래프 합성곱 신경망 기반의 다중 패션 스타일 인식)

  • Kim, Sunghoon;Choi, Yerim;Park, Jonghyuk
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Recently, there are increasing attempts to utilize deep learning methodology in the fashion industry. Accordingly, research dealing with various fashion-related problems have been proposed, and superior performances have been achieved. However, the studies for fashion style classification have not reflected the characteristics of the fashion style that one outfit can include multiple styles simultaneously. Therefore, we aim to solve the multi-label classification problem by utilizing the dependencies between the styles. A multi-label recognition model based on a graph convolution network is applied to detect and explore fashion styles' dependencies. Furthermore, we accelerate model training and improve the model's performance through transfer learning. The proposed model was verified by a dataset collected from social network services and outperformed baselines.

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • In this paper, we propose a new stacking ensemble framework for deep learning models which reflects the distribution of label embeddings. Our ensemble framework consists of two phases: training the baseline deep learning classifier, and training the sub-classifiers based on the clustering results of label embeddings. Our framework aims to divide a multi-class classification problem into small sub-problems based on the clustering results. The clustering is conducted on the label embeddings obtained from the weight of the last layer of the baseline classifier. After clustering, sub-classifiers are constructed to classify the sub-classes in each cluster. From the experimental results, we found that the label embeddings well reflect the relationships between classification labels, and our ensemble framework can improve the classification performance on a CIFAR 100 dataset.

A Study of Active Pulse Classification Algorithm using Multi-label Convolutional Neural Networks (다중 레이블 콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘 연구)

  • Kim, Guenhwan;Lee, Seokjin;Lee, Kyunkyung;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 2020
  • In this research, we proposed the active pulse classification algorithm using multi-label convolutional neural networks for active sonar system. The proposed algorithm has the advantage of being able to acquire the information of the active pulse at a time, unlike the existing single label-based algorithm, which has several neural network structures, and also has an advantage of simplifying the learning process. In order to verify the proposed algorithm, the neural network was trained using sea experimental data. As a result of the analysis, it was confirmed that the proposed algorithm converged, and through the analysis of the confusion matrix, it was confirmed that it has excellent active pulse classification performance.

KE-T5-Based Text Emotion Classification in Korean Conversations (KE-T5 기반 한국어 대화 문장 감정 분류)

  • Lim, Yeongbeom;Kim, San;Jang, Jin Yea;Shin, Saim;Jung, Minyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.496-497
    • /
    • 2021
  • 감정 분류는 사람의 사고방식이나 행동양식을 구분하기 위한 중요한 열쇠로, 지난 수십 년간 감정 분석과 관련된 다양한 연구가 진행되었다. 감정 분류의 품질과 정확도를 높이기 위한 방법 중 하나로 단일 레이블링 대신 다중 레이블링된 데이터 세트를 감정 분석에 활용하는 연구가 제안되었고, 본 논문에서는 T5 모델을 한국어와 영어 코퍼스로 학습한 KE-T5 모델을 기반으로 한국어 발화 데이터를 단일 레이블링한 경우와 다중 레이블링한 경우의 감정 분류 성능을 비교한 결과 다중 레이블 데이터 세트가 단일 레이블 데이터 세트보다 23.3% 더 높은 정확도를 보임을 확인했다.

  • PDF

Improving a CNN-based Image Annotation System Using Multi-Labeled Images (다중 레이블 이미지를 활용한 CNN기반 이미지 어노테이션 시스템의 개선)

  • Kim, Taeksoo;Kim, Sangbum
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.99-103
    • /
    • 2015
  • 최근 딥러닝 기술의 발전에 힘입어 이미지로부터 자동으로 관련된 단어 혹은 문장을 생성하는 연구들이 진행되고 있는데, 많은 연구들은 이미지와 단어가 1:1로 대응된 잘 정련된 학습 집합을 필요로 한다. 한편 스마트폰 보급의 확산으로 인스타그램, 폴라 등의 이미지 기반 SNS가 급속하게 성장함에 따라 인터넷에는 한 이미지의 복수개의 단어(태그)가 부착되어있는 데이터들이 폭증하고 있는 것이 현실이다. 본 논문에서는 소규모의 잘 정련된 학습 집합뿐 아니라 이러한 대규모의 다중 레이블 데이터를 같이 활용하여 이미지로부터 태그를 생성하는 개선된 CNN구조 및 학습알고리즘을 제안한다. 기존의 분류 기반 모델에 은닉층을 추가하고 새로운 학습 방법을 도입한 결과, 어노테이션 성능이 기존 모델보다 11% 이상 향상되었다.

  • PDF

Opponent Move Prediction of a Real-time Strategy Game Using a Multi-label Classification Based on Machine Learning (기계학습 기반 다중 레이블 분류를 이용한 실시간 전략 게임에서의 상대 행동 예측)

  • Shin, Seung-Soo;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.45-51
    • /
    • 2020
  • Recently, many games provide data related to the users' game play, and there have been a few studies that predict opponent move by combining machine learning methods. This study predicts opponent move using match data of a real-time strategy game named ClashRoyale and a multi-label classification based on machine learning. In the initial experiment, binary card properties, binary card coordinates, and normalized time information are input, and card type and card coordinates are predicted using random forest and multi-layer perceptron. Subsequently, experiments were conducted sequentially using the next three data preprocessing methods. First, some property information of the input data were transformed. Next, input data were converted to nested form considering the consecutive card input system. Finally, input data were predicted by dividing into the early and the latter according to the normalized time information. As a result, the best preprocessing step was shown about 2.6% improvement in card type and about 1.8% improvement in card coordinates when nested data divided into the early.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Korean Named Entity Recognition using Joint Learning with Language Model (언어 모델 다중 학습을 이용한 한국어 개체명 인식)

  • Kim, Byeong-Jae;Park, Chan-min;Choi, Yoon-Young;Kwon, Myeong-Joon;Seo, Jeong-Yeon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.333-337
    • /
    • 2017
  • 본 논문에서는 개체명 인식과 언어 모델의 다중 학습을 이용한 한국어 개체명 인식 방법을 제안한다. 다중 학습은 1 개의 모델에서 2 개 이상의 작업을 동시에 분석하여 성능 향상을 기대할 수 있는 방법이지만, 이를 적용하기 위해서 말뭉치에 각 작업에 해당하는 태그가 부착되어야 하는 문제가 있다. 본 논문에서는 추가적인 태그 부착 없이 정보를 획득할 수 있는 언어 모델을 개체명 인식 작업과 결합하여 성능 향상을 이루고자 한다. 또한 단순한 형태소 입력의 한계를 극복하기 위해 입력 표상을 자소 및 형태소 품사의 임베딩으로 확장하였다. 기계 학습 방법은 순차적 레이블링에서 높은 성능을 제공하는 Bi-directional LSTM CRF 모델을 사용하였고, 실험 결과 언어 모델이 개체명 인식의 오류를 효과적으로 개선함을 확인하였다.

  • PDF