• Title/Summary/Keyword: 다중 단면 재구성

Search Result 6, Processing Time 0.024 seconds

A management system for plural viewing coordinates of multiplanar reformation (의료영상 시스템의 다중 단면 재구성을 위한 좌표계 제어 시스템)

  • Kim, Jun-Ho;Kye, Hee-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.163-170
    • /
    • 2010
  • Multi-planar reformatting(MPR) is a volume rendering technique which generates images of sectional planes users define, so that it is essential for medical imaging system. Due to the recent advances of medical imaging system, users require to place plural planes on a single dataset and to enable an individual and easy control for each plane. In this paper, we enumerate various user operations for recent MPR and analyze user requirements to update the plane equation. For the effective control of coordinate system, each plane is considered in a separated coordinate system and all informations which form a coordinate system are grouped into two components: the individual components and the common components. The proposed system is implemented on a graphics hardware, so that it smoothly performs MPR including recent requirements.

Improvement in Reconstruction Time Using Multi-Core Processor on Computed Tomography (다중코어 프로세서를 이용한 전산화단층촬영의 재구성 시간 개선)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.487-493
    • /
    • 2015
  • The reconstruction on the computed tomography requires much time for calculation. The calculation time rapidly increases with enlarging matrix size for improving image quality. Multi-core processor, multi-core CPU, has widely used nowadays and has provided the reduction of the calculation time through multi-threads. In this study, the calculation time of the reconstruction process would improved using multi-threads based on the multi-core processor. The Pthread and the OpenMP used for multi-threads were used in convolution and back projection steps that required much time in the reconstruction. The Pthread and the OpenMP showed similar results in the speedup and the efficiency.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Diameters of the Thoracic Aorta Measured with Multidetector Computed Tomography (다중검출 전산화 단층촬영을 이용하여 측정한 흉부대동맥의 직경)

  • Lee, Gun;Lim, Chang-Young;Lee, Hyeon-Jae
    • Journal of Chest Surgery
    • /
    • v.42 no.1
    • /
    • pp.79-86
    • /
    • 2009
  • Background: Background: Computed tomography (CT) is the main tool for detecting abnormalities of the thoracic aorta, but conventional CT only shows the cross-sectional images. These CT images have some limitations fo accuratly measuring the thoracic aortic diameters at various levels. Multidetector computed tomography (MDCT) overcomes these limitations. We measured the thoracic aortic diameter perpendicular to the loop-shaped thoracic aortic course and this was studied in relation to age, gender, height, weight, the body surface area, the body mass index and the presence of hypertension. Material and Method: Thirty hundred thirty one patients (males: 141 patients and females: 190 patients) who had no abnormalities of the thoracic aorta were investigated using MDCT aortography. They were divided into three age categories: 20~39 years old, 40~59 years old and over age 60. The image was reformed with multiplanar reconstruction and the diameter of the aorta was measured perpendicular to the aortic course at 5 anatomic segments. Level A was the mid-ascending aorta, level B was the distal ascending aorta, level C was the aortic arch, level D was the aortic isthmus and level E was the mid-descending aorta. Result: The mean age was 49.5 years old for males and 54.9 years old for females (p<0.05). The mean diameter of the thoracic aorta at level A was 31.1 mm, that at level B was 30.2 mm, that at level C was 26.5 mm, that at level D was 24.0 mm and that at level E was 22.6 mm. The diameters at all the levels were gradually increased with age. Hypertensive patients had larger diameters than did the non-hypertensive population. There was a positive correlation between the ascending aortic diameter (levels A&B) and height and the body surface area, but there were no statistical differences at the aortic arch (level C) and the descending aorta (levels D&E). There were no statistical differences of the weight and body mass index at all levels. Conclusion: The diameters of the thoracic aortas were directly correlated with gender, age and hypertension. Height and the body surface area were only correlated with the ascending aorta. Weight and the body mass index have no statistical difference at all levels. We measured the age related thoracic aortic diameters and the upper normal limits and we provide this data as reference values for the thoracic aortic diameter in the Korean population.