Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.286-286
/
2016
기후변화를 고려한 위한 미래 수자원 계획은 신뢰성 있는 수문기상인자의 산정을 통한 수자원 영향 평가 결과로 수립되는 것이 중요하다. 본 연구에서는 DHSVM모형과 TOPLATS모형에서 생산된 결과를 가지고 제약조건을 가지는 다중선형회귀 모형을 통하여 2012년-2014년 동안의 한반도 유역에 대한 수문기상인자를 산정하였다(Fig. 1). 다중선형회귀 모형은 하나의 종속변수의 변화를 설명하기 위하여 두 개 이상의 독립변수를 사용하는 모형으로 일반적으로 다중선형회귀 모형의 회귀 계수는 음의 값을 가질 수 있으므로 본 연구의 적용을 위하여 검정지점에 대하여 산정된 음의 회귀계수 값이 그대로 적용될 경우 적합하지 않으므로 회귀 계수에 제약조건을 부여하였다. 제한된 회귀 계수의 범위는 0-1사이를 가진다. 동적 다중선형 모형의 구성은 광릉 GCK, GDK 지점자료를 활용하였다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.354-354
/
2017
홍수예경보는 발생되는 홍수의 규모와 시간을 가능한 정확하고 빠르게 예측하여 홍수에 대한 위험성을 사전에 알리고자 하는데 목적이 있다. 따라서 하천범람에 따른 피해를 최소화하기 위한 홍수예경보는 일정시간의 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 신경망 모형을 한강의 제1지류인 횡성댐 상류 섬강 시험유역에 적용하였다. 다중회귀모형 및 신경망 모형의 학습에는 섬강 시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 30분 이내에 발생 가능한 수위를 예측하였다. 모의 결과 신경망 수위예측모형의 결정계수는 0.967으로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.815로 나타나 신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 중소하천에서 선행시간을 확보한 홍수 예경보 구축에 활용할 수 있을 것으로 판단된다.
The numbers of SCI paper or patent in science and technology are expected to be related with the number of researcher and knowledge stock (R&D stock, paper stock, patent stock). The results of the regression model showed that severe multicollinearity existed and errors were made in the estimation and testing of regression coefficients. To solve the problem of multicollinearity and estimate the effect of the independent variable properly, principal component regression model were applied for three cases with S&T knowledge production. The estimated principal component regression function was transformed into original independent variables to interpret properly its effect. The analysis indicated that the principal component regression model was useful to estimate the effect of the highly correlate production factors and showed that the number of researcher, R&D stock, paper or patent stock had all positive effect on the production of paper or patent.
Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.23-23
/
2018
본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.775-779
/
2006
강우자료의 구축은 수문해석에 있어 가장 기본적이며 중요한 단계라 할 수 있다. 하지만 수문 관측 자료의 경우 결측치가 존재하여 그에 대한 보정이 필요한 경우가 종종 발생하게 된다. 따라서 수문자료의 분석을 수행하기에 앞서 우선 자료에 대한 검정을 실시하고, 결측치가 존재할 경우는 이를 보정하여 분석을 수행하여야 한다. 본 연구에서는 다변량통계기법의 하나인 다중회귀분석을 이용하여 강우 결측치를 보정하였다. 본 연구에서는 다중공선성과 자기상관에 대하여 고려한 다중회귀모형을 구성하였다. 모형의 구성시 모든 결측지점에 적용이 가능하지 않아 일반성이 떨어짐을 확인 할 수 있었지만, 모형이 구성될 경우 통계적 적합도와 유의수준을 확인 할 수 있는 장점이 있었으며, 다중회귀모형이 구성되는 경우 좋은 보정 결과를 주는 것을 확인 할 수 있었다.
Proceedings of the Korea Contents Association Conference
/
2013.05a
/
pp.171-172
/
2013
우울은 군대 내 발생되는 극단적인 사고 중 하나인 자살의 주요 원인으로 제시되어 왔다. 본 연구는 군인들의 우울, 불안 및 자아존중감의 수준을 파악하고, 우울의 영향요인을 탐색하고 이들을 예측하는데 주로 사용해 왔던 다중회귀분석 방법과 효과적인 의사결정방법으로 알려진 회귀나무모형의 효과성을 비교해보고자 하였다. 방법: 횡단적 조사연구이며, 우울측정에는 CES-D, 불안측정은 SAI, 자아존중감은 Rosenberg(1965)의 도구를 사용하였다. 연구대상자는 강원도 전방 부대 근무 중인 군인이며, 534부가 회수되었다. SPSS/WIN 18.0을 이용하여 위계적 다중회귀분석과 회귀나무모형을 실시하였다. 결과: 대상자들의 우울, 불안 및 자아존중감의 정도는 각각 $10.7({\pm}9.8)$, $38.5({\pm}10.2)$과 $31.7({\pm}5.2)$이었다. 대상자의 23.6%(126명)가 경한 우울을 나타내었다. 다중회귀분석에 의한 우울 영향요인은 불안, 자아존중감과 복무기간이었으며, 우울에 대하여 62.0%의 설명력을 가지고 있었다. 또한 회귀나무모형에서는 높은 불안과 불안이 다소 낮더라도 전역 후 진로가 불확실한 집단이 우울 위험군일 것으로 예측되었다. 결론: 본 연구 대상자들의 우울의 주요 영향요인은 불안으로 나타났다. 군대 내에서 적용할 수 있는 불안 조절 방법 개발이 필요할 것으로 보인다. 또한 일부 요인에서 차이가 있어, 반복 연구가 필요하지만, 주요 변인인 불안을 예측했다는 점에서 보면 다중회귀분석과 회귀나무모형은 군인들의 우울을 예측에 유용한 방법으로 보인다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.6
/
pp.26-36
/
2021
In this study, a deep learning model for predicting the queue length was developed using the information collected from the image detector. Then, a multiple regression analysis model, a statistical technique, was derived and compared using two indices of mean absolute error(MAE) and root mean square error(RMSE). From the results of multiple regression analysis, time, day of the week, occupancy, and bus traffic were found to be statistically significant variables. Occupancy showed the most strong impact on the queue length among the variables. For the optimal deep learning model, 4 hidden layers and 6 lookback were determined, and MAE and RMSE were 6.34 and 8.99. As a result of evaluating the two models, the MAE of the multiple regression model and the deep learning model were 13.65 and 6.44, respectively, and the RMSE were 19.10 and 9.11, respectively. The deep learning model reduced the MAE by 52.8% and the RMSE by 52.3% compared to the multiple regression model.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.205-205
/
2016
우리나라의 겨울철 자연재해 중 대설에 의한 피해가 발생하는 빈도가 증가하고 있는 가운데 그 피해를 예측하고 대비하기 위한 연구들이 다수 진행되고 있다. 강설은 일단위로 측정하며, 매일 새롭게 내린 강설의 양인 최심신적설과 기존에 녹지 않고 쌓여 있던 깊이까지를 고려한 최심적설로 구분된다. 우리나라의 경우에는 갑작스럽게 내린 폭설에 의한 피해가 대부분이므로 최심신적설량을 예측하는 것이 매우 중요하다. 이에 본 연구에서는 다중회귀분석을 이용해 우리나라의 최심신적설량을 추정하기 위한 식을 개발하였다. 다중회귀분석을 위한 독립변수로는 해당 일에 예측된 강수량, 일평균기온, 일최고기온, 일최저기온을 사용하였으며, 강수량과 일평균기온의 상호작용을 고려할 수 있도록 모형을 구성하였다. 모형의 개발에는 전국 74개 기상관측소의 최심신적설 자료를 관측소 단위로 전체 자료의 2/3을 무작위로 추출하여 이용하였으며, 추출되지 않고 남은 1/3의 자료를 이용해 모형에 대한 검증을 실시하였다. 그 결과 상호작용항이 포함되지 않은 다중선형회귀모형에 비해 상호작용을 고려한 다중회귀모형의 예측력이 훨씬 우수하게 나타났다. 강수량과 기온이 정확하게 예측된다면 개발된 추정식을 이용해 간편하게 최심신적설량을 예측할 수 있어, 폭설에 대한 대비에 활용할 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.514-514
/
2015
홍수 예측의 개선에 있어 정확한 공간 토양수분 정보는 필수적이다. 위성관측을 활용한 토양수분관측이 이루어지고 있으나 실제적 토양수분 상태와 정량적 차이가 크므로 편이보정을 통한 정량적 개선과정이 요구되는 실정이다. 따라서, 본 연구에서는 위성에서 관측한 AMSR2 토양수분과 지상관측 토양수분자료 및 다중회귀모형를 이용하여 토양수분자료를 정량적로 개선하였다. 공간 해상도가 10 km인 AMSR2 토양수분을 1 km로 상세화한 우리나라 전역의 토양수분 자료와 수자원관리종합정보시스템(WAMIS)에서 제공하는 강우관측소 556개 지점에서 관측한 강우자료, 후처리한 MODIS LST 자료, 증발산량 및 식생지수를 사용하였다. 2012년 7월부터 2013년까지 기상청 농업기상관측관서에서 관측하는 지점 중 사용 가능한 6개 토양수분관측소 자료에 대해 토양군별회귀계수를 산정하였다. 토양군별 다중회귀모형을 이용하여 편이보정한 토양수분자료는 전반적으로 과소추정되는 AMSR2 토양수분의 단점을 개선하여 위성관측 토양수분자료의 활용성을 개선하였다(Fig. 1).
Proceedings of the Korea Water Resources Association Conference
/
1991.07a
/
pp.119-132
/
1991
장기 수자원 개발계획의 수립에 필요한 월유출량의 추정을 위해, 수위계획지점의 유출자료를 사용하여 다중회귀분석으로 회귀모형을 수립함으로써 미계측지점의 월유출량 추정을 가능토록 하였다. 사용한 자료는 총 48개 수위관측소의 월유출량 및 기상·지상인자이며 이중 43개지점은 모형의 개발에 나머지 5개 지점은 모형의 검증에 이용하였다. 또한 모형을 유역별모형과 전체모형, 평균치모형과 개별자료모형으로 구분하여 모형-1, 모형-2, 모형-3 그리고 모형-4의 4개 모형을 수립하였으며, 검증결과 모형-2가 가장 적절한 모형으로 판단 되었다. 선정된 회기모형과 기존의 가지야마공식의 적용성을 통계적 방법에 의해 비교한 결과, 본 다중회기모형의 연유출량 뿐아니라 월별유출량의 변화성향을 매우 잘 나타내고 있으며, 적용 또한 용이함이 입증되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.