• Title/Summary/Keyword: 다중회귀분석기법

Search Result 238, Processing Time 0.036 seconds

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.

Statistical Analysis of Water Flow and Water Quality Data in the Imjin River Basin for Total Pollutant Load Management (임진강 유역 오염물질 총량관리를 위한 유량-수질 자료의 통계분석)

  • Cho, Yong-Chul;Choi, Hyeon-Mi;Lee, Young Joon;Ryu, Ingu;Lee, Myung-Gu;Gu, Donghoi;Choi, Kyungwan;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.353-366
    • /
    • 2018
  • The purpose of this study was assessment the quality of water by using the statistical analysis technique of the Water flow and water quality from January 2012 to December 2016 at the unit basin for total pollutant load management system (TPLMS) in the Imjin River. Water flow and water quality were monitored at an average of 8 day intervals, 11 parameters were used for correlation analysis, principal component analysis (PCA), factor analysis (FA), and cluster analysis (CA). The Hierarchical CA was classified into three according to the change of space, such as natural rivers, urban rivers, point with large influence of point pollution source, it was found that the type of contamination source the similarity of water quality affected the classification of cluster. Using one-way analysis of variance (ANOVA) and post-hoc Analysis, there were statistically significant differences between mean values among the clusters. Correlation analysis showed the correlation coefficient between $COD_{Mn}$ and TOC was 0.951 (p<0.01) and the correlation was statistically significantly higher. According to the result PCA and FA, 3 principal components can explaining 72% of the total variations in water quality characteristics and main factor was EC, $BOD_5$, $COD_{Mn}$, TN, TP and TOC indirect indicators of organic matter and nutrients were influenced. This study presented the regression equation obtained by applying the factor scores to the multiple linear regression analysis and concluded that the management Indirect indicators of organic matter and nutrients is important for water quality management in the Imjin River basin.

The Effect of Golf Exercise through Rehabilitation Training for Middle-aged Women (중년여성의 재활트레이닝을 통한 골프운동의 효과)

  • Lee, Seung-Do
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.4
    • /
    • pp.223-235
    • /
    • 2020
  • The purpose of this study is to verify the effect of golf exercise through rehabilitation training for middle-aged women and to suggest the right golf activities. To achieve the purpose of this study, the subjects were 40-50 year old middle-aged women in Jinju, Gyeongnam Province in February 2020. The subjects of this study were 8 women who were controlled by the subjects who needed to be corrected in golf swing orbit. For the accurate measurement test, the program was conducted for 10 days after explaining the purpose and utilization plan of the study. The data collected by testing level of physical strength and distance before and after the experiment were finally analyzed and used. The statistical processing of the collected data was conducted using SPSS win18.0 program, and the statistical techniques were calculated by means of frequency analysis, average(M) and standard deviation(sd), and t-test, one-way ANOVA and multiple regression analysis were conducted. The results of this study through these methods and procedures are as follows. First, rehabilitation training of general characteristics showed a high difference in golf exercise. Second, there was a high difference in the level of rehabilitation training and physical fitness in swing orbit and distance. Third, rehabilitation training and physical fitness level had a high effect on swing orbit and distance.

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

Severity-Adjusted LOS Model of AMI patients based on the Korean National Hospital Discharge in-depth Injury Survey Data (퇴원손상심층조사 자료를 기반으로 한 급성심근경색환자 재원일수의 중증도 보정 모형 개발)

  • Kim, Won-Joong;Kim, Sung-Soo;Kim, Eun-Ju;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4910-4918
    • /
    • 2013
  • This study aims to design a Severity-Adjusted LOS(Length of Stay) Model in order to efficiently manage LOS of AMI(Acute Myocardial Infarction) patients. We designed a Severity-Adjusted LOS Model with using data-mining methods(multiple regression analysis, decision trees, and neural network) which covered 6,074 AMI patients who showed the diagnosis of I21 from 2004-2009 Korean National Hospital Discharge in-depth Injury Survey. A decision tree model was chosen for the final model that produced superior results. This study discovered that the execution of CABG, status at discharge(alive or dead), comorbidity index, etc. were major factors affecting a Sevirity-Adjustment of LOS of AMI patients. The difference between real LOS and adjusted LOS resulted from hospital location and bed size. The efficient management of LOS of AMI patients requires that we need to perform various activities after identifying differentiating factors. These factors can be specified by applying each hospital's data into this newly designed Severity-Adjusted LOS Model.

Development of Ship Valuation Model by Neural Network (신경망기법을 활용한 선박 가치평가 모델 개발)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • The purpose of this study is to develop the ship valuation model by utilizing the neural network model. The target of the valuation was secondhand VLCC. The variables were set as major factors inducing changes in the value of ship through prior research, and the corresponding data were collected on a monthly basis from January 2000 to August 2020. To determine the stability of subsequent variables, a multi-collinearity test was carried out and finally the research structure was designed by selecting six independent variables and one dependent variable. Based on this structure, a total of nine simulation models were designed using linear regression, neural network regression, and random forest algorithm. In addition, the accuracy of the evaluation results are improved through comparative verification between each model. As a result of the evaluation, it was found that the most accurate when the neural network regression model, which consist of a hidden layer composed of two layers, was simulated through comparison with actual VLCC values. The possible implications of this study first, creative research in terms of applying neural network model to ship valuation; this deviates from the existing formalized evaluation techniques. Second, the objectivity of research results was enhanced from a dynamic perspective by analyzing and predicting the factors of changes in the shipping. market.

A comparison of synthetic data approaches using utility and disclosure risk measures (유용성과 노출 위험성 지표를 이용한 재현자료 기법 비교 연구)

  • Seongbin An;Trang Doan;Juhee Lee;Jiwoo Kim;Yong Jae Kim;Yunji Kim;Changwon Yoon;Sungkyu Jung;Dongha Kim;Sunghoon Kwon;Hang J Kim;Jeongyoun Ahn;Cheolwoo Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.141-166
    • /
    • 2023
  • This paper investigates synthetic data generation methods and their evaluation measures. There have been increasing demands for releasing various types of data to the public for different purposes. At the same time, there are also unavoidable concerns about leaking critical or sensitive information. Many synthetic data generation methods have been proposed over the years in order to address these concerns and implemented in some countries, including Korea. The current study aims to introduce and compare three representative synthetic data generation approaches: Sequential regression, nonparametric Bayesian multiple imputations, and deep generative models. Several evaluation metrics that measure the utility and disclosure risk of synthetic data are also reviewed. We provide empirical comparisons of the three synthetic data generation approaches with respect to various evaluation measures. The findings of this work will help practitioners to have a better understanding of the advantages and disadvantages of those synthetic data methods.

Group Classification on Management Behavior of Diabetic Mellitus (당뇨 환자의 관리행태에 대한 군집 분류)

  • Kang, Sung-Hong;Choi, Soon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.765-774
    • /
    • 2011
  • The purpose of this study is to provide informative statistics which can be used for effective Diabetes Management Programs. We collected and analyzed the data of 666 diabetic people who had participated in Korean National Health and Nutrition Examination Survey in 2007 and 2008. Group classification on management behavior of Diabetic Mellitus is based on the K-means clustering method. The Decision Tree method and Multiple Regression Analysis were used to study factors of the management behavior of Diabetic Mellitus. Diabetic people were largely classified into three categories: Health Behavior Program Group, Focused Management Program Group, and Complication Test Program Group. First, Health Behavior Program Group means that even though drug therapy and complication test are being well performed, people should still need to improve their health behavior such as exercising regularly and avoid drinking and smoking. Second, Focused Management Program Group means that they show an uncooperative attitude about treatment and complication test and also take a passive action to improve their health behavior. Third, Complication Test Program Group means that they take a positive attitude about treatment and improving their health behavior but they pay no attention to complication test to detect acute and chronic disease early. The main factor for group classification was to prove whether they have hyperlipidemia or not. This varied widely with an individual's gender, income, age, occupation, and self rated health. To improve the rate of diabetic management, specialized diabetic management programs should be applied depending on each group's character.

Development of Practical Lumped Contaminant Modeling Approach for Fate and Transport of Complex Organic Mixtures (복잡한 혼합 유기오염물의 거동 예측을 위한 실용적인 오염물 집략화 모델링 기법 개발)

  • Joo, Jin-Chul;Song, Ho-Myeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.18-28
    • /
    • 2009
  • Both feasibility and accuracy of lumped approach to group 12 organic compounds in mixtures into a fewer number of pseudocompounds in sorption processes were evaluated using mixtures containing organic compounds with various physicochemical properties and low-surface-area mineral sorbents. The lumped approach for sorption to simulated mineral sorbents was developed by cluster analysis from statistics. Using the lumped approach, the sorption estimated from both reduced number of pseudocompounds and their sorption parameters (i.e., $K_f$, n) can approximate sorption behavior of complex organic mixtures. Additionally, the pseudocompounds for various mixtures to different types of low-surface-area mineral sorbents can be estimated a priori from the physicochemical properties of organic compound (i.e., ${\gamma_w}^{sat}$). Therefore, the lumped approach may help to simplify the complex fate and transport model of organic contaminant mixtures, reduce experimental efforts, and yet provide results that are statistically identical for practical purposes. Further research is warranted to enhance the accuracy of lumped approach using the multiple regression analysis considering the H-bonding capacity, site concentrations, functional groups for mineral sorbents.