• 제목/요약/키워드: 다중판별자

검색결과 36건 처리시간 0.019초

성형 웹 사이트의 기능 속성과 사이트 방문간 관계에 관한 연구

  • 조영빈
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.251-256
    • /
    • 2007
  • 성형외과에서는 웹 방문자를 늘리기 위하여 다양한 노력을 하고 있지만, 웹 사이트의 어떠한 속성이 웹 방문자 수를 증대시키는지에 대한 체계적인 연구는 찾아보기 어렵다. 본 논문에서는 방문자 수가 많은 성형외과 웹 사이트와 방문자 수가 적은 웹 사이트를 구분하는 속성을 규명하였다. 다중 판별 분석과 의사결정 나무 기법, 신경망 분석 기법을 이용하여 방문자의 다소 (多少)를 구분하는 속성들을 도출하였다. 웹 사이트의 속성 중 '가상성형프로그램', '정보추천' 등 소수의 속성이 방문자 수의 다소(多少)를 설명하는 것으로 드러났다.

  • PDF

다중 판별자를 가지는 동적 삼차원 뉴로 시스템 (A Dynamic Three Dimensional Neuro System with Multi-Discriminator)

  • 김성진;이동형;이수동
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.585-594
    • /
    • 2007
  • 오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.

다중 판별기를 이용한 비디오 행동 인식 (Human Action Recognition in Videos using Multi-classifiers)

  • 김세민;노용만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 추계학술대회
    • /
    • pp.54-57
    • /
    • 2013
  • 최근 다양한 방송 및 영상 분야에서 사람의 행동을 인식하여는 연구들이 많이 이루어지고 있다. 영상은 다양한 형태를 가질 수 있기 때문에 제약된 환경에서 유용한 템플릿 방법들보다 특징점에 기반한 연구들이 실제 사용자 환경에서 더욱 관심을 받고 있다. 특징점 기반의 연구들은 영상에서 움직임이 발생하는 지점들을 찾아내어 이를 3차원 패치들로 생성한다. 이를 이용하여 영상의 움직임을 히스토그램에 기반한 descriptor(서술자)로 표현하고 학습기반의 판별기(classifier)로 최종적으로 영상 내에 존재하는 행동들을 인식하였다. 그러나 단일 판별기를 이용한 다양한 영상 인식을 수용하기에는 힘들다. 최근에 이를 개선하기 위하여 다중 판별기를 활용한 연구들이 영상 판별 및 물체 검출 영역에서 사용되고 있다. 따라서 본 논문에서는 행동 인식을 위하여 support vector machine과 spare representation을 이용한 decision-level fusion 방법을 제안하고자 한다. 제안된 논문의 방법은 영상에서 특징점 기반의 descriptor를 추출하고 이를 각각의 판별기를 통하여 판별 결과들을 획득한다. 이 후 학습단계에서 획득된 가중치를 활용하여 각 결과들을 융합하여 최종 결과를 도출하였다. 본 논문에 실험에서 제안된 방법은 기존의 융합 방법보다 높은 행동 인식 성능을 보여 주었다.

  • PDF

RAM 기반 신경망의 MRD 기법에 관한 연구 (A Study on MRD Methods of A RAM-based Neural Net)

  • 이동형;김성진;박상무;이수동;옥철영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권9호
    • /
    • pp.11-19
    • /
    • 2009
  • 다중 판별자를 가지는 RAM 기반 신경망은 단일판별자의 신경 망보다 다범주에서 더 우수한 성능 가진다. 다중 판별자를 가지는 경험유관이진신경망과 3차원 뉴로 시스템(3DNS)은 RAM 기반 이진신경망의 단점인 추가 및 반복 학습, 일반화 패턴 추출 등을 개선하였다. 다중 판별자를 사용하는 신경망의 범주 결정 방법은 MRD 기법으로, 각 판별자의 출력합들 중 최대응답 값으로 결정된다. 그러나 학습 패턴량이 증가하면 신경소자와 판별자의 메모리 포화 문제가 발생되며 이는 MRD의 변별력 저하로 전체 성능이 떨어지는 원인이 된다. 이를 해결하기 위해 기존 MRD의 성능을 향상시킬 수 있는 연구가 필요하다고 본다. 본 논문에서는 최적의 MRD 방법을 찾기 위해 사상 매칭, 누적 필터비 인형 응답 차 그리고 제안된 MRD 기법들을 이용한 최적 MRD 기법 등을 제안하였다. 제안된 MRD의 평가는 3DNS에 전처리 과정 없이 MNIST의 NIST에서 제공하는 숫자 자료를 이용하였다. 제안된 기법들은 기존 MRD보다 우수한 인식률과 입력 패턴의 변형 및 노이즈에 대하여 안정적인 결과를 보였다.

SVM 결정법칙에 의한 얼굴 및 서명기반 다중생체인식 시스템 (Multi-modal Biometrics System Based on Face and Signature by SVM Decision Rule)

  • 민준오;이대종;전명근
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.885-892
    • /
    • 2004
  • 본 논문에서는 SVM에 기반을 둔 결정법칙에 의해 얼굴인식과 서명인식시스템으로 구성된 다중생체인식시스템을 제안하고자 한다. 이를 위해 퍼지 선형판별기법(Fuzzy Linear Discriminant Analysis : Fnzzy LDA)를 이용한 얼굴인식과 선형판별분석기법과 구간매칭기법을 이용한 서명인식을 구축하였다. 두 개의 단일생체인식시스템을 효과적으로 융합시키기 위해 우선 독립적인 두 개의 생체인식시스템에 의해 산출된 매칭도로부터 등록자(Genuine)와 침입자(Impostor)의 확률 분포 모델을 생성한 후, SVM(Support Vector Machine)에 의해 최종 인증하는 구조로 되어있다. 제안된 방법인 SVM기반 결정법칙을 적용하여 실험한 결과 기존에 결정법칙으로 많이 사용되고 있는 가중치합과 결정트리 방식에 비해 각각 $1.654{\%}$$3.3{\%}$의 인식률 향상을 나타내 제안된 방법의 우수성을 나타냈다.

비디오 행동 인식을 위하여 다중 판별 결과 융합을 통한 성능 개선에 관한 연구 (A Study for Improved Human Action Recognition using Multi-classifiers)

  • 김세민;노용만
    • 방송공학회논문지
    • /
    • 제19권2호
    • /
    • pp.166-173
    • /
    • 2014
  • 최근 다양한 방송 및 영상 분야에서 사람의 행동을 인식하여는 연구들이 많이 이루어지고 있다. 영상은 다양한 형태를 가질 수 있기 때문에 제약된 환경에서 유용한 템플릿 방법들보다 특징점에 기반한 연구들이 실제 사용자 환경에서 더욱 관심을 받고 있다. 특징점 기반의 연구들은 영상에서 움직임이 발생하는 지점들을 찾아내어 이를 3차원 패치들로 생성한다. 이를 이용하여 영상의 움직임을 히스토그램에 기반한 descriptor(서술자)로 표현하고 학습기반의 판별기로 최종적으로 영상내에 존재하는 행동들을 인식하였다. 그러나 단일 판별기로는 다양한 행동을 인식하기에 어려움이 있다. 따라서 이러한 문제를 개선하기 위하여 최근에 다중 판별기를 활용한 연구들이 영상 판별 및 물체 검출 영역에서 사용되고 있다. 따라서 본 논문에서는 행동 인식을 위하여 support vector machine과 sparse representation을 이용한 decision-level fusion 방법을 제안하고자 한다. 제안된 논문의 방법은 영상에서 특징점 기반의 descriptor를 추출하고 이를 각각의 판별기를 통하여 판별 결과들을 획득한다. 이 후 학습단계에서 획득된 가중치를 활용하여 각 결과들을 융합하여 최종 결과를 도출하였다. 본 논문에 실험에서 제안된 방법은 기존의 융합 방법보다 높은 행동 인식 성능을 보여 주었다.

도로포장 및 교량 유지보수 현장에서 RTLS를 활용한 다중 노무자의 안전관리 시스템 개발 (Developement of Safety Management System of Multi-Laborers Using RTLS in the Pavement and Bridge Construction Field)

  • 송기일;임진선
    • 한국방재안전학회논문집
    • /
    • 제9권1호
    • /
    • pp.33-38
    • /
    • 2016
  • 도로포장 및 교량 유지보수 현장에서 노무자의 안전을 관리할 수 있도록 실시간 위치정보 시스템을 개발하였다. 이 시스템은 다중의 노무자들의 실시간 위치 탐색, 이동 이력, 행동 특성을 확인할 수 있다. 이 시스템은 저전력 블루투스 및 지그비 통신시스템으로 구성되었다. RSSI를 이용한 삼각측량으로 위치 인식을 하는 과거의 방법은 매우 큰 오차를 가진다. 때문에 본 연구는 가속도계와 RSSI를 이용한 새로운 거리측정 방법 및 보정 방안을 제시하였다. 도로포장 및 교량 유지보수 현장에서 개발한 시스템의 오차를 평가한 결과 0.2 m~0.4 m의 오차를 나타내었다. 그리고 가속도 이력을 판별하여 통해 노무자의 안전 상황에 대한 판별이 가능함을 확인하였다.

딥러닝 다중 네트워크를 이용한 졸음 운전감지 및 안전벨트 착용 여부 확인 (Drowsy driving and seat belt detection using multiple deep learning networks)

  • 류세열;유재천
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.75-77
    • /
    • 2021
  • 다양한 원인으로 매년 수많은 사람이 교통사고로 목숨을 잃거나 크게 다치곤 한다. 최근 교통사고 통계자료에 따르면 졸음운전으로 인한 교통사고가 음주운전이나, 과속보다도 높은 비중을 차지하고 있었다. 또한, 사고가 났을 때 안전벨트를 매지 않은 운전자나 동승객은 부상 정도가 훨씬 심각한 것으로 알려져 전 좌석에 안전벨트를 꼭 착용해야 하는 법도 제정되었다. 그런데도 많은 운전자 및 동승자가 안전벨트를 착용하지 않아 크게 부상을 당하는 사고는 줄지 않고 있다. 이러한 사고와 부상을 줄이기 위하여 본 논문에서는 다중 네트워크를 이용하여 운전자의 졸음 감지 및 운전자, 동승자의 안전벨트 착용 여부까지 실시간으로 판별하는 시스템을 설계하고 구현한다.

  • PDF

적응적 가중치를 이용한 RAM 기반 누적 신경망 (A RAM-based Cumulative Neural Net with Adaptive Weights)

  • 이동형;김성진;권영철;이수동
    • 한국멀티미디어학회논문지
    • /
    • 제13권2호
    • /
    • pp.216-224
    • /
    • 2010
  • RAM 기반 신경망은 빠른 처리 속도와 하드웨어 구현의 용이성 등의 장점을 가지고 있지만 반면에 메모리의 포화 문제, 반복학습, 일반화 패턴 추출의 어려움 등의 단점도 가지고 있다. 이런 단점을 극복하기 위해 누적 다중 판별자를 가지는 3차원 뉴로 시스템(3DNS) 등이 제안되었지만 메모리 포화 문제는 해결하지는 못하였다. 본 논문에서는 메모리 포화 문제를 해결하기 위하여 적응적 가중치를 가지는 AWN (Adaptive Weight Neuron)을 사용한 적응적 가중치 누적 신경망(AWCNN)을 제안한다. 제안된 모델은 AWN으로 3DNS을 개선하여 인식률과 메모리 포화 문제 해결을 향상하였다. 제안된 시스템의 평가는 전처리 과정 없이 NIST의 MNIST에서 제공하는 자료를 이용하여 실험하였다. AWCNN은 3DNS보다 1.5%이상의 향상된 인식률을 보였고 일반화 패턴을 이용한 인식에서는 모든 입력 패턴의 교육된 것과 비슷한 성능을 얻었다.

다중판별분석을 이용한 이동통신서비스 사용자 분류와 HSDPA 서비스 전략에 관한 연구 (A Discriminant Analysis on the User Classification of Mobile Telecommunications Service and HSDPA Service Strategy)

  • 이준엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권5호
    • /
    • pp.83-92
    • /
    • 2010
  • 우리나라 이동통신 시장은 기술의 발전과 다양해지는 소비자의 욕구 등으로 가입자 수의 급증만큼이나 경쟁 양상도 심화되고 있다. 또한 HSDPA라는 3G 이동통신서비스의 등장으로 세대 간 고객전환을 위한 치열한 마케팅 활동이 펼쳐지고 있다. 이러한 상황 속에서 이동통신 사업자에게 장기적인 경쟁우위를 안겨줄 원천에 대한 해답으로 가입의 활성화와 함께 이용의 활성화가 대두되고 있다. 이에 본 연구에서는 다중판별분석을 이용하여 이동통신서비스 시장을 가입의향과 이용의향이 모두 높은 고객과 그렇지 않은 고객으로 세분화하고 가입의향과 이용의향이 모두 높은 주요고객을 판별하는 판별함수를 도출하였다. 이를 통해 치열한 경쟁을 겪고 있는 HSDPA 서비스 시장에 유용한 전략 포인트를 제시하였다.