본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.
본 논문에서는 다양한 검색 환경과 모바일 디바이스의 센서 정보를 활용한 모바일 이미지 검색 방법을 제안하고 안드로이드 플랫폼에서 구동하는 검색 시스템을 구현하였다. 설계 개발 시스템은 JPEG 이미지를 대상으로 산업계 표준 메타데이터인 EXIF 속성과 시각적 특징을 결합한 새로운 검색 기술자이며, 검색을 위한 특징 추출 및 유사도 평가 알고리즘을 모바일 환경에 최적화한 이미지 검색 모듈이다. 실험을 통해, 대용량 이미지 데이터셋을 대상으로 안드로이드 폰에서 효율적인 이미지 검색을 수행하였음을 보였다.
본 논문에서는 웹카메라 영상과 같은 저해상도의 동영상으로부터 실시간으로 다중 얼굴을 검출할 수 있는 시스템을 제안한다. 본 논문에서는 먼저 영상내의 거대한 특징 집합으로부터 중요한 작은 특징 집합을 선택하는 AdaBoost 기반 객체 검출 방법을 사용하여 얼굴 후보 영역을 검출한다. 검출된 얼굴 후보 영역에 대한 주성분 분석을 수행함으로써 데이터의 크기가 현저히 줄어든 특징 벡터를 구한다. 그 다음에는 특징 벡터에 대해 SVM 기반 이진분류를 수행하여 후보 영역의 영상이 얼굴인지 아닌지를 판별한다. 실험결과에 의하면, 본 논문에서 제안한 방법은 저해상도 동영상에서 실시간 처리가 가능한 다중 얼굴 검출 성능을 보였고, 주성분분석과 SVM을 이용한 얼굴 검증 과정을 통해 얼굴 검출의 정확도를 향상 시켰다.
본 논문에서는 모바일 디바이스의 카메라로부터 얻은 RGB이미지를 분석하여 장애물을 안정적으로 탐지할 수 있는 프레임워크를 제안한다. 본 논문에서는 장애물을 안정적으로 찾기 위해 RANSAC(Random Sample Consensus)기반의 다중 평면 방식을 이용한 위험감지 시스템을 제안한다. 우리의 접근 방식은 RGB영상으로부터 특징점(Feature point)을 추출하고, 특징점을 분석(Feature point analysis)하여 영상내의 평면을 감지한다. 복잡한 지형으로 인해 생성되는 다수의 평면을 RANSAC을 통해 단일 평면으로 정규화하고, 이로부터 특징점을 분류하기 위한 기준점을 계산한다. 모바일 디바이스의 위치와 회전 제약 없이 효과적으로 기준평면(Reference plane)을 탐색할 수 있고, 영상 내 특징점을 실시간으로 계산한다. 다양한 실험을 통해 기준평면과 장애물과의 거리를 파악하여 장애물을 효과적으로 분류하는 결과를 얻었다. 우리의 기법은 실세계에서의 위험요소를 감지하고 모바일 디바이스 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다.
최근 신경망 기반 기술들의 발달에 따라, 신경망 기술들은 충분히 높은 임무 수행 성능을 달성하고 있으며 사물인터넷, 스마트시티, 자율주행 등 다양한 환경을 고려한 응용 역시 활발히 연구되고 있다. 하지만 이러한 신경망의 임무 다양성과 복잡성은 더욱 많은 비디오 데이터가 요구되며 대역폭이 제한된 환경을 고려한 응용에서 이러한 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해 Video Coding for Machines (VCM) 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 부호화 효율을 개선하기 위하여 VCM 을 위한 다중 스케일 특징 압축 방법을 제안한다. COCO2017 데이터셋의 검증 영상을 기반으로 제안방법을 평가한 결과, 압축된 특징의 크기는 원본 이미지의 0.03 배이며 6.8% 미만의 임무 정확도 손실을 보였다.
이 논문에서는 다양한 불가사리 영상을 판단하여 불가사리를 인식하는 기법을 제안하고자 한다. 아무르불가사리의 단일개체를 인식하는 경우는 불가사리의 오목 특성과 단선 특성을 이용하여 불가사리 여부를 판단할 수 있으나, 다중개체의 경우는 오목과 단선을 이용한 불가사리의 특징 추출이 불가능하기 때문에 불가사리로 인식할 수 없다. 따라서 다중개체의 영역 중심 모멘트와 장선을 이용하여 장선의 표준편차, 장선별 표준편차 값, 상대각 표준편차, 유효편차수 등의 특징을 이용한 인식 기법을 제안하고자 한다. 제안한 기법의 실험 결과 장선의 표준편차 조건이나 상대각의 유효편차수 조건을 만족하지 못하여 인식에 실패한 경우도 있었으나 약 95%의 높은 인식률을 보였다.
본 논문에서는 국내에서 발생한 지진 신호를 검출 및 식별하기 위한 방법을 다루었다. 국내에서 발생한 지진 신호들을 분석해 본 결과 서로 다른 주파수 대역 신호의 특징들이 각각 분류를 위한 특징으로 적절함을 확인할 수 있었다. 이러한 분석 결과를 바탕으로 지진 신호에서 추출한 다중 주파수 대역 특징을 기반으로 하는 CNN(Convolutional Neural Network) 기법에 대해서 제안하였다. 제안하는 다중 주파수 대역 CNN 기법은 지진 신호에서 추출한 멜 스펙트럼에 대해서 각각 필터를 적용하여 서로 다른 주파수 대역(저/중/고 주파수)의 신호를 추출하였다. 추출된 신호들을 바탕으로 각각 CNN 기반 분류를 수행하였고, 수행된 결과를 융합하여 최종적으로 지진 이벤트에 대해 식별하였다. 2018년 동안 대한민국에서 발생한 실제 지진데이터를 기반으로 하는 실험을 통해 제안하는 기법에 대한 효용성을 검증하였다.
최근 코로나19로 인한 비대면 서비스의 확산으로 온라인을 통한 소통이 증가하고 있다. 비대면 상황에서는 텍스트나 음성, 이미지 등의 모달리티를 통해 상대방의 의견이나 감정을 인식하고 있다. 현재 다양한 모달리티를 결합한 멀티모달 감정인식에 관한 연구가 활발하게 진행되고 있다. 그중 음성 데이터를 활용한 감정인식은 음향 및 언어정보를 통해 감정을 이해하는 수단으로 주목하고 있으나 대부분 단일한 음성 특징값으로 감정을 인식하고 있다. 하지만 대화문에는 다양한 감정이 복합적으로 존재하기 때문에 다중 감정을 인식하는 방법이 필요하다. 따라서 본 논문에서는 복합적으로 존재하는 내재된 감정인식을 위해 음성 데이터를 전처리한 후 특징 벡터를 추출하고 시간의 흐름을 고려한 다중 감정 회귀 모델을 제안한다.
눈 검출은 눈 동공의 정 중앙의 위치를 찾아내는 작업을 의미하며, 얼굴 인식 및 관련된 응용 분야 등에서 필요한 작업이다. 현재까지 보고된 대부분의 눈 검출 방법의 경우 성공적인 적용을 위해서는 여전히 정확도 및 검출 속도의 개선을 필요로 한다. 본 논문에서는 큰 계산량의 부담이 없는 다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출 방법을 제안한다. 가버 특징 벡터를 사용한 눈 검출은 EBGM 등에서 이미 이용되고 있다. 그런데, RBGM 등에서 사용한 눈 검출 방법은 초기값에 민감하고 조명, 자세 등에 강인하지 못하여, 만족할 만한 검출률을 얻기 위해서는 광범위한 탐색 범위가 필요하다. 이는 계산량의 상당한 증가를 초래한다. 본 논문에서 제안한 눈 검출 방법은 다중 해상도 접근 방법을 활용한다. 먼저, 원래 해상도 얼굴 이미지를 다운샘플링하여 얻은 저해상도 얼굴 이미지에서, 초기 추정 눈 위치에서의 가버 특징 벡터와 해당 해상도의 눈에 대한 가버 특징 벡터 모델과의 가버젯 유사도를 이용하여 눈 위치를 검출한다. 이후 검출된 눈 위치를 업스케일링하여 상위 해상도의 얼굴 이미지에서의 눈 위치 초기값으로 취하고 앞 단계에서처럼 가버젯 유사도를 이용하여 눈을 검출한다. 이 과정을 반복하여 최종적으로 원래 해상도 얼굴 이미지에서의 눈 위치를 확정한다. 또한, 본 논문에서는 제안된 다중 해상도 접근 방법이 조명에 대해서도 보다 강인하도록 하는 데 효과적인 조명 정규화 기법을 제안하고, 이를 다중 해상도 접근 방법의 전처리 단계에 추가적으로 적용함으로써 눈 검출 성공률을 더욱 개선하였다. 실험을 통해, 본 논문에서 제안한 다중스케일 가버 특징 벡터 기반 눈 검출 방법은 계산량을 크게 증가 시키지 않으면서 기존 연구들에서 보고된 다른 눈 검출 방법에 비해 정확도가 개선된 검출 방법이며, 자세 및 조명 변화에 대해서도 강인하다는 것을 확인하였다.
본 논문은 의료 영상 중 X-ray 영상에 대한 효과적인 분류와 자동 주석 생성을 위한 방법을 제안한다. X-ray 영상은 일반 자연 영상과는 다르게 영상 내에 중요한 의미를 가지고 있는 관심 영역과 어두운 단색의 배경으로 구성된 특징을 가지고 있음으로 본 논문에서는, 영상의 중요영역에서 해리스 코너 검출기를 이용한 색 구조 기술자(H-CSD)로 색 특징을 추출하고, 질감 특징을 위해 경계선 히스토그램 기술자(EHD)를 사용하였다. 추출된 두 개의 특징 벡터들은 각각 다중 클래스 Support Vector Machine에 적용되어 20개의 카테고리 중 하나로 영상을 분류한다. 마지막으로, 영상은 미리 정의된 카테고리들의 계층적인 관계와 우선 순위에 기반하여 주석 코드 배열(Annotation Code Array)을 부여 받고 이를 이용하여 다수의 최적 키워드를 얻으며 갖게 된다. 실험에서는 제안한 주석 생성방법을 관련 연구 방법과 비교하여 성능이 개선 되었음을 보여주고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.