• Title/Summary/Keyword: 다중이동물체추적

Search Result 30, Processing Time 0.021 seconds

Classification and Tracking of Unknown Multiple Underwater Moving Objects Using Neural Networks (신경망에 의한 미지의 다중 수중 이동물체의 판별 및 추적)

  • 하석운
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.389-396
    • /
    • 1999
  • In this paper, we propose a multiple underwater object classification and tracking algorithm using the narrowband tonal and frequency line features extracted from the frequency spectrum of the acoustic signal. The general algorithm using the wideband and narrowband energy has a high tracking error when objects are close and cross each other. But the proposed algorithm shows a good tracking performance for the simulation scenarios generated by the real acoustic data.

  • PDF

Population Movement Analysis Using Visual Object Tracking (다중물체추적을 이용한 유동인구 행태 분석)

  • Choi, Kyuh-Young;Choi, Young-Ju;Jung, Ji-Hong;Seo, Yong-Duek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2007.02a
    • /
    • pp.83-86
    • /
    • 2007
  • 비디오에서의 물체 추적은 컴퓨터비젼(computer vision)의 주요 연구 분야로 지능형 로봇, 무인 감시 체제 등의 영역의 핵심 기술로 여겨지고 있다. 본 논문에서는 다중물체추적을 통해 카메라로 부터 입력된 동영상에서 특정 장소를 지나가는 사람들을 추적함으로서, 그 지역에서의 인구의 이동 패턴을 추출하고 자 한다. 물체 추적은 블롭 추적(blob tracking) 방식을 이용하며, 이를 위해 정확한 전경물체 추출, 추출된 이미지 블롭(blob)과 기존 트랙과의 연결, 새로운 물체(사람)의 등장과 퇴장등의 작업을 수행한다. 추적된 물체들이 궤적을 통해, 시간의 변화에 따른 그 지역에서의 인구의 밀도, 주 이동 경로, 방향 등의 변화를 추출한다. 이러한 통계치는 해당 지역의 개발 정책 수립 및 시장성 조사를 위한 2차 데이타로 활용할 수 있다.

  • PDF

A Study on Real-time Background Updating in Multi Object Tracking (다중 이동 물체 추적 시의 실시간 배경 영상 갱신 방법에 관한 연구)

  • Park, Eun-Kyeong;Lee, Sang-Hoon;Choi, Ji-Young;Cha, Eui-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.619-622
    • /
    • 2003
  • 다중 물체 추적은 움직이는 물체를 추출하고 추출된 정보와 물체 정보를 이용하여 움직임 궤도를 추적하는 것이다. 따라서 정확한 움직임 궤도 추적이 수행되어지려면 우선적으로 물체의 수에 해당하는 Object 추출이 선행되어져야 한다. 물체 추적 시 물체 추출은 주로 처리속도가 빠르고 효율적인 배경영상을 이용한 차영상 기법을 이용하는데 이 경우 배경 영상 갱신이 중요하다. 본 논문에서는 실세계조명 하에서 장시간 다중 물체 추적이 가능하도록 물체의 움직임이 아닌 물체의 위치에 기반한 배경 영상 획득 방법을 제안한다.

  • PDF

Model Creation Algorithm for Multiple Moving Objects Tracking (다중이동물체 추적을 위한 모델생성 알고리즘)

  • 조남형;김하식;이명길;이주신
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.633-637
    • /
    • 2001
  • In this paper, we proposed model creation algorithm for multiple moving objects tracking. The proposed algorithm is divided that the initial model creation step as moving objects are entered into background image and the model reformation step in the moving objects tracking step. In the initial model creation step, the initial model is created by AND operating division image, divided using difference image and clustering method, and edge image of the current image. In the model reformation step, a new model was reformed in the every frame to adapt appearance change of moving objects using Hausdorff Distance and 2D-Logarithmic searching algorithm. We simulated for driving cart in the road. In the result, model was created over 98% in case of irregular approach direction of cars and tracking objects number.

  • PDF

Moving Object Detection and Tracking Techniques for Error Reduction (오인식률 감소를 위한 이동 물체 검출 및 추적 기법)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.20-26
    • /
    • 2018
  • In this paper, we propose a moving object detection and tracking algorithm based on multi-frame feature point tracking information to reduce false positives. However, there are problems of detection error and tracking speed in existing studies. In order to compensate for this, we first calculate the corner feature points and the optical flow of multiple frames for camera movement compensation and object tracking. Next, the tracking error of the optical flow is reduced by the multi-frame forward-backward tracking, and the traced feature points are divided into the background and the moving object candidate based on homography and RANSAC algorithm for camera movement compensation. Among the transformed corner feature points, the outlier points removed by the RANSAC are clustered and the outlier cluster of a certain size is classified as the moving object candidate. Objects classified as moving object candidates are tracked according to label tracking based data association analysis. In this paper, we prove that the proposed algorithm improves both precision and recall compared with existing algorithms by using quadrotor image - based detection and tracking performance experiments.

A Study on the Development of Selectable and Individual Moving Object Tracking Algorithm (선택적 개별 물체의 이동 추적 알고리즘 개발에 관한 연구)

  • Kim, Seong-Il
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.50-58
    • /
    • 2001
  • 본 논문에서는 움직임을 갖는 다중 물체 중에서 하나의 물체를 선택하고, 선택된 물체를 계속 추적하는 알고리즘을 제안하였다. 일반적으로 차영상을 이용하는 이동물체의 동작정보 추출방법은 주로 연속되는 영상내에서 일정한 영역의 영상특성을 정합하는 방법이 주로 사용되어왔다. 본 논문에서 제안한 동작정보의 추출방법은 연속영상간의 차연산을 한번 시행함으로써 얻어진 움직임영역을 기반으로 사용자에 의해 임의로 선택된 특정한 움직임영역을 추출하는 것이다. 특정한 모양이나 패턴을 인식하여 추적하는 것과는 달리 본 논문에서는 사용자에 의해 선택된 물체를 추적목표물체로 삼는 새로운 이동추적 방법을 제시하였다. 실험은 CCD 카메라로 입력된 실제 금붕어 영상을 이용하여 선택된 이동물체의 추적이 효과적으로 수행됨을 보였다.

  • PDF

Multiple Moving Objects Detection and Tracking Algorithm for Intelligent Surveillance System (지능형 보안 시스템을 위한 다중 물체 탐지 및 추적 알고리즘)

  • Shi, Lan Yan;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.741-747
    • /
    • 2012
  • In this paper, we propose a fast and robust framework for detecting and tracking multiple targets. The proposed system includes two modules: object detection module and object tracking module. In the detection module, we preprocess the input images frame by frame, such as gray and binarization. Next after extracting the foreground object from the input images, morphology technology is used to reduce noises in foreground images. We also use a block-based histogram analysis method to distinguish human and other objects. In the tracking module, color-based tracking algorithm and Kalman filter are used. After converting the RGB images into HSV images, the color-based tracking algorithm to track the multiple targets is used. Also, Kalman filter is proposed to track the object and to judge the occlusion of different objects. Finally, we show the effectiveness and the applicability of the proposed method through experiments.

Moving Object Detection and Counting System Using Multi-Resolution Edge Information (다중해상도 에지정보를 이용한 이동 물체 탐지 및 계수 시스템)

  • Jeong, Jongmyeon;Song, Sion;Kim, Hoyoung;Jo, HongLae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.137-138
    • /
    • 2015
  • 본 논문에서는 연속된 영상에서 다중해상도 에지정보의 차이를 이용하여 이동하는 물체를 탐지하고 계수하는 시스템을 제안한다. 연속적으로 입력되는 영상에 대하여 이산 웨이블릿 연산을 수행하여 다중해상도 에지를 추출하고, 인접한 프레임 사이의 다중해상도 에지 차이를 이용하여 이동물체를 추출한다. 가중치가 부여된 유클리디언 거리를 이용하여 물체를 추적한 다음, 칼만필터를 이용하여 물체 궤적의 위치 정보를 보정한다. 마지막으로, 관심영역에 대한 물체 궤적의 상대적인 위치를 고려하여 이동물체를 계수한다.

  • PDF

The Interesting Moving Objects Tracking Algorithm using Color Informations on Multi-Video Camera (다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 알고리듬)

  • Shin, Chang-Hoon;Lee, Joo-Shin
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, the interesting moving objects tracking algorithm using color information on Multi-Video camera is proposed Moving objects are detected by using difference image method and integral projection method to background image and objects image only with hue area, after converting RGB color coordination of image which is input from multi-video camera into HSI color coordination. Hue information of the detected moving area are normalized by 24 steps from 0$^{\circ}$ to 360$^{\circ}$ It is used for the feature parameters of the moving objects that three normalization levels with the highest distribution and distance among three normalization levels after obtaining a hue distribution chart of the normalized moving objects. Moving objects identity among four cameras is distinguished with distribution of three normalization levels and distance among three normalization levels, and then the moving objects are tracked and surveilled. To examine propriety of the proposed method, four cameras are set up indoor difference places, humans are targeted for moving objects. As surveillance results of the interesting human, hue distribution chart variation of the detected Interesting human at each camera in under 10%, and it is confirmed that the interesting human is tracked and surveilled by using feature parameters at four cameras, automatically.

An Moving Object Segmentation for Moving Camera (이동카메라 환경에서 이동물체분할에 관한 연구)

  • Cho, Youngseok;Kang, Jingu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • 본 논문에서는 이동 카메라 환경에서 이동물체 추적을 위한 영상 분할에 대하여 연구하였다. 입력영상으로 부터 이동물체영역을 분할하기위하여 입력영상에 대하여 윤곽선을 구한 다음 윤곽선 영역에 대하여 BMA을 이용하여 이동벡터를 구한다. 구해진 이동벡터를 같은 특성의 벡터들을 분류하여 이동물체를 분할한다. 제안된 알고리즘이 다중 이동물체의 분할이 가능하였다.

  • PDF