Annual Conference on Human and Language Technology
/
2019.10a
/
pp.175-180
/
2019
관계 추출은 문서에서 존재하는 트리플(주어, 관계어, 목적어)형식에 해당하는 단어를 추출하는 작업을 뜻한다. 본 논문에서는 멀티헤드 셀프 어텐션을 이용하여 트리플 중 주어나 목적어를 찾는 구조를 제안한다. 한국어 위키피디아와 DBpedia의 관계어를 단어 임베딩을 통해 벡터를 생성하고 입력한다. 초록과 관계어의 어텐션 이후 멀티 헤드 셀프 어텐선 구조를 통해 초록 중 관계어와 관련 있는 단어들의 가중치가 높아 진다. 멀티헤드 셀프 어텐션 과정을 반복하여 주요 단어들의 가중치가 계속해서 높아진다. 이를 입력으로 하여 정답이 될 단어의 시작과 끝을 선택한다. 제안 방법으로 직접 구축한 한국어 관계 추출 데이터셋을 대상으로 F1 0.7981의 성능을 보였다. 제안 방법은 관계어와 같이 단순한 정보만을 이용하고도 초록에서 적절한 정답 단어를 추출할 수 있음을 확인하였다. 관계어의 범위를 확장함으로서 나아가 육하원칙(5W1H)과 같은 이벤트의 추출에도 활용할 수 있을 것이다.
This paper presents a novel M-shaped encoder-decoder architecture for skin lesion segmentation, achieving better performance than existing approaches. The proposed architecture utilizes the left and right legs to enable multi-scale feature extraction and is further enhanced by integrating an attention module within the skip connection. The image is partitioned into four distinct patches, facilitating enhanced processing within the encoder-decoder framework. A pivotal aspect of the proposed method is to focus more on critical image features through an attention mechanism, leading to refined segmentation. Experimental results highlight the effectiveness of the proposed approach, demonstrating superior accuracy, precision, and Jaccard Index compared to existing methods
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.12
/
pp.1595-1603
/
2020
Online defamation incidents such as Internet news comments on portal sites, SNS, and community sites are increasing in recent years. Bias and hate expressions threaten online service users in various forms, such as invasion of privacy and personal attacks, and defamation issues. In the past few years, academia and industry have been approaching in various ways to solve this problem The purpose of this study is to build a dataset and experiment with deep learning classification modeling for detecting various bias expressions as well as hate expressions. The dataset was annotated 7 labels that 10 personnel cross-checked. In this study, each of the 7 classes in a dataset of about 137,111 Korean internet news comments is binary classified and analyzed through deep learning techniques. The Proposed technique used in this study is multi-channel CNN model with attention. As a result of the experiment, the weighted average f1 score was 70.32% of performance.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.418-423
/
2022
한국어 형태소 분석은 자연어 처리의 기초가 되는 태스크이므로 빠르게 결과를 출력해야 한다. 기존연구는 자동회귀 모델을 한국어 형태소 분석에 적용하여 좋은 성능을 기록하였다. 하지만 자동회귀 모델은 느리다는 단점이 있고, 이 문제를 극복하기 위해 비자동회귀 모델을 사용할 수 있다. 비자동회귀 모델을 한국어 형태소 분석에 적용하면 조화롭지 않은 시퀀스 문제와 토큰 반복 문제가 발생한다. 본 논문에서는 두 문제를 해결하기 위하여 다중 디코더 기반의 한국어 형태소 분석을 제안한다. 조화롭지 않은 시퀀스는 다중 디코더를 적용함으로써, 토큰 반복 문제는 두 개의 디코더에 서로 어텐션을 적용하여 문제를 완화할 수 있다. 본 논문에서 제안한 모델은 세종 형태소 분석 말뭉치를 대상으로 좋은 성능을 확보하면서 빠르게 결과를 생성할 수 있음을 실험적으로 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.572-577
/
2020
일관된 발화를 생성함에 있어 인격데이터(persona)의 도입을 이용한 연구가 활발히 진행되고 있지만, 한국어 데이터셋의 부재와 데이터셋 생성의 어려움이 문제점으로 지적된다. 본 연구에서는 인격데이터를 포함하지 않고 일관된 발화를 생성할 수 있는 방법으로 다중 대화 시스템에서 사전 학습된 자연어 추론(NLI) 모델을 도입하는 방법을 제안한다. 자연어 추론 모델을 이용한 관계 분석을 통해 과거 대화 내용 중 발화 생성에 이용할 대화를 선택하고, 자가 참조 모델(self-attention)과 다중 어텐션(multi-head attention) 모델을 활용하여 과거 대화 내용을 반영한 발화를 생성한다. 일관성 있는 발화 생성을 위해 기존 NLI데이터셋으로 수행할 수 있는 새로운 학습모델 nMLM을 제안하고, 이 방법이 일관성 있는 발화를 만드는데 기여할 수 있는 방법에 대해 연구한다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.101-101
/
2023
지난 수십 년 동안 다양한 딥러닝 방법이 개발되고 있으며 수문 분야에서는 이러한 딥러닝 모형이 기존의 수문모형의 역할을 대체하여 사용할 수 있다는 가능성이 제시되고 있다. 본 연구에서는 딥러닝 모형 중에 트랜스포머 모형에 다중 인코더를 사용하여 중장기 기간 (1 ~ 10일)의 리드 타임에 대한 한국의 유출량 예측 전망의 가능성을 확인하고자 하였다. 트랜스포머 모형은 인코더와 디코더 구조로 구성되어 있으며 어텐션 (attention) 기법을 사용하여 기존 모형의 정보를 손실하는 단점을 보완한 모형이다. 본 연구에서 사용된 다중 인코더 기반의 트랜스포머 모델은 트랜스포머의 인코더와 디코더 구조에서 인코더를 하나 더 추가한 모형이다. 그리고 결과 비교를 위해 기존에 수문모형을 활용한 스태킹 앙상블 모형 (Stacking ensemble model) 기반의 예측모형을 추가로 구축하였다. 구축된 모형들은 남한 전체를 총 469개의 대규모 격자로 나누어 각 격자의 유출량을 비교하여 평가하였다. 결과적으로 수문모형보다 딥러닝 모형인 다중 인코더 기반의 트랜스포머 모형이 더 긴 리드 타임에서 높은 성능을 나타냈으며 이를 통해 수문모형의 역할을 딥러닝 모형이 어느 정도는 대신할 수 있고 높은 성능을 가질 수 있는 것을 확인하였다.
Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.
Over the past decade, the remarkable advancements in deep neural networks have paralleled the development and evolution of language models. Initially, language models were developed in the form of Encoder-Decoder models using early RNNs. However, with the introduction of Attention in 2015 and the emergence of the Transformer in 2017, the field saw revolutionary growth. This study briefly reviews the development process of language models and examines in detail the working mechanism and technical elements of the Transformer. Additionally, it explores statistical models and methodologies related to language models and the Transformer.
In this paper, we propose a framework for improving the performance of semantic segmentation of agricultural multispectral image using feature fusion techniques. Most of the semantic segmentation models being studied in the field of smart farms are trained on RGB images and focus on increasing the depth and complexity of the model to improve performance. In this study, we go beyond the conventional approach and optimize and design a model with multispectral and attention mechanisms. The proposed method fuses features from multiple channels collected from a UAV along with a single RGB image to increase feature extraction performance and recognize complementary features to increase the learning effect. We study the model structure to focus on feature fusion and compare its performance with other models by experimenting with favorable channels and combinations for crop images. The experimental results show that the model combining RGB and NDVI performs better than combinations with other channels.
The video face recognition (FR) is one of the most popular researches in the field of computer vision due to a variety of applications. In particular, research using the attention mechanism is being actively conducted. In video face recognition, attention represents where to focus on by using the input value of the whole or a specific region, or which frame to focus on when there are many frames. In this paper, we propose a novel attention based deep learning method. Main novelties of our method are (1) the use of combining two loss functions, namely weighted Softmax loss function and a Triplet loss function and (2) the feasibility of end-to-end learning which includes the feature embedding network and attention weight computation. The feature embedding network has a positive effect on the attention weight computation by using combined loss function and end-to-end learning. To demonstrate the effectiveness of our proposed method, extensive and comparative experiments have been carried out to evaluate our method on IJB-A dataset with their standard evaluation protocols. Our proposed method represented better or comparable recognition rate compared to other state-of-the-art video FR methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.