• Title/Summary/Keyword: 다중센서 영상

Search Result 223, Processing Time 0.025 seconds

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.

Fine Registration between Very High Resolution Satellite Images Using Registration Noise Distribution (등록오차 분포특성을 이용한 고해상도 위성영상 간 정밀 등록)

  • Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.125-132
    • /
    • 2017
  • Even after applying an image registration, Very High Resolution (VHR) multi-temporal images acquired from different optical satellite sensors such as IKONOS, QuickBird, and Kompsat-2 show a local misalignment due to dissimilarities in sensor properties and acquisition conditions. As the local misalignment, also referred to as Registration Noise (RN), is likely to have a negative impact on multi-temporal information extraction, detecting and reducing the RN can improve the multi-temporal image processing performance. In this paper, an approach to fine registration between VHR multi-temporal images by considering local distribution of RN is proposed. Since the dominant RN mainly exists along boundaries of objects, we use edge information in high frequency regions to identify it. In order to validate the proposed approach, datasets are built from VHR multi-temporal images acquired by optical satellite sensors. Both qualitative and quantitative assessments confirm the effectiveness of the proposed RN-based fine registration approach compared to the manual registration.

SAR-IR 융합 기반 표적 탐지 기술 동향 분석

  • Im, Yun-Ji;Won, Jin-Ju;Kim, Seong-Ho;Kim, So-Hyeon
    • ICROS
    • /
    • v.21 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • 단일 센서 기반의 표적 탐지 문제에서 센서의 한계 요소에 의해 탐지 성능이 제한된다. 따라서, 최근 단일 센서 기반의 표적 탐지 성능을 향상시키기 위한 방안으로 각 센서의 강점을 효과적으로 융합하는 다중 센서 정보 융합 기반의 표적 탐지 기법에 대한 연구가 활발히 진행되고 있다. 센서 정보 융합을 위해서는 각 센서별 영상 획득, 각 영상의 기하학적 정합, 센서 정보 융합 기반의 표적 탐지 기술이 필요하며, 본 논문에서는 이에 대한 기술 및 개발 동향을 소개한다.

  • PDF

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Image Registration Method for KOMPSAT-2 clouds imagery (구름이 존재하는 아리랑 2호 영상의 영상정합 방법)

  • Kim, Tae-Young;Choi, Myung-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.250-253
    • /
    • 2009
  • 고해상도 컬러 위성 영상 촬영을 위한 다중분광 센서를 탑재한 위성의 영상은, 탑재체에 장착된 센서의 위치에 따라, 동일 지역에 대해 센서 간의 촬영시각의 차이가 발생한다. 만약 이동하는 구름이 촬영될 경우, 센서별 촬영 영상간에는 구름과 지상과의 상대적 위치가 달라진다. 고해상도 컬러 위성 영상을 생성하기 위해, 영상 정합(image registration) 기법이 사용되는 데, 일반적인 영상 정합 알고리즘은 촬영 영상에서의 특징점(feature point)이 움직이지 않는 것을 전제로 수행한다. 그 결과 이동하는 구름 경계부에서 정합점(matching point)이 추출될 경우, 지상 영역에서의 정합품질이 좋지 않다. 따라서, 본 연구에서는 구름 경계부에서 정합점이 추출되지 않는 알고리즘을 제안하였다. 실험 영상으로 구름이 존재하는 아리랑2호 영상을 사용하였고, 제안된 영상 정합 알고리즘은 지상 영역에서의 정합 품질이 높였음을 보였다.

  • PDF

Object Region Detection using Multi-Sensor Fusion and Background Estimation (다중센서 융합과 배경 추정을 이용한 물체 영역 검출)

  • 조주현;최해철;이진성;신호철;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.443-446
    • /
    • 2001
  • 본 논문에서는 센서 융합과 배경 추정 기법을 이용하여 연속된 영상에서 물체 영역을 검출하는 기법을 제안하였다. IR/CCD각각의 카메라로부터 얻은 입력 영상을 정렬하고 융합하는 과정을 거친 후, 각 화소 단위의 배경 모델을 추정하고 시간이 지남에 따라 이를 갱신함으로써 물체 영역을 효과적으로 검출하는 기법을 제시하고 있다. 실험은 차량을 대상으로 하였고, 카메라가 움직이는 상황과 비교적 복잡한 환경에서도 좋은 결과를 얻을 수 있었다.

  • PDF

Comparative Analysis of Image Fusion methods using KOMPSAT-2 Imagery (KOMPSAT-2 위성영상을 이용한 영상융합기법 비교연구)

  • Yu, Beong-Hyeok;Chi, Gwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.196-201
    • /
    • 2009
  • KOMPSAT-2 위성영상은 공간해상도가 우수한 1-m급 전정색 영상과, 상대적으로 분광해상도가 우수한 4-m급 다중분광 영상을 동시 취득하는 다중 센서이다. 영상융합기법의 적용을 통해 1-m급 고해상도 다중분광 영상의 취득이 가능하며, 이것은 1-m급에서 식별 가능한 객체들을 분류하고 변화 탐지하는데 활용될 수 있다. 본 연구는 IHS (Intensity-Hue-Saturation) 융합 기법의 I (Intensity) 와 $\delta$ 값을 조정함으로써 새로운 융합기법을 제안하였으며, 육안분석과 상관계수를 가지고 다른 융합기법들과 비교분석하였다. 실험 결과, 제안된 기법의 융합영상은 원본 다중분광영상과 가장 높은 상관계수를 나타내었으며, 상관계수가 유사한 웨이브릿 융합 또는 고대역 필터링과의 육안분석에서 확연히 우수한 공간 선명도를 나타내는 것으로 평가되었다.

  • PDF

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Man-made Feature Extraction from the Hyperion Sensor Data (Hyperion 센서 데이터를 이용한 지형지물 추출)

  • 서병준;강명호;이용웅;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.182-186
    • /
    • 2003
  • 일반적으로 영상은 공간, 분광 및 시간 해상력을 바탕으로 고해상과 저해상 영상으로 구분된다. 최근 IKONOS 와 QuickBird 등 공간해상력이 1m 이하인 위성 영상들이 국내에 공급되어 바야흐로 고해상 위성영상을 이용한 다양한 활용분야들이 연구되고 있다. 이에 반하여 고분광해상력을 갖는 하이퍼스펙트럴 영상에 대한 연구는 미흡한 실정이다. 국제적으로는 항공기탑재 센서들을 이용한 다양하고 광범위한 조사분석 연구가 이루어지고 있으나, 국내에서는 장비와 관심의 부재로 인하여 초기적인 연구 단계에 있는 실정이다 하이퍼스펙트럴 센서는 환경, 지질, 목표물 인식 분야에 있어 많은 관심을 받고 있으며 위성탑재 초다중분광센서가 운용되기 시작하면서 연구의 활성화가 더욱 기대되고 있다. 본 연구에서는 EO-1 위성의 Hyperion 센서 데이터를 이용하여 노이즈 제거를 위한 영상 전처리 과정을 실시하고 분광특성에 따른 무감독 분류를 통한 인덱싱 기법과 널리 알려진 분광 라이브러리를 활용한 대상물, 특히 인공지물 추출 기법을 실험하였다. 이를 위하여 MNF(Maximum/Minimum Noise Filtering) 변환 및 분광 매칭(Spectral Matching) 기법, 분광 라이브러리 처리 등을 수행하였다. 결과의 비교를 위하여 동일 지역의 Landsat ETM+ 데이터를 이용하여 상호비교를 통한 검증작업으로서 그 성과를 판단하였다.

  • PDF

Landuse Mapping using KOMPSAT-2 Satellite Image in River Basin Flood Mitigation Planning (유역 홍수계획수립에서 KOMPSAT-2 영상을 이용한 토지이용도 제작)

  • Shin, Hyoung-Sub;Kim, Kyu-Ho;Jung, Sang-Hwa;Na, Sang-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.635-635
    • /
    • 2012
  • 최근 공공분야 및 민간분야에서 고해상도 위성영상의 활용이 높아짐에 따라 이를 이용하여 수자원 분야의 치수계획 및 안전도 평가, 유역 홍수대응기술 분야에서의 다양한 활용이 비약적으로 증대되고 있는 실정이다. 고해상도 위성영상의 활용은 국지적 규모의 토지이용 변화 및 대기 상태의 모니터링을 위한 효과적인 기술로 인식되어 왔다. 우리나라의 KOMPSAT-2 위성은 GSD(Ground Sample Distance) 1m급의 전정색 영상과 4m급의 다중분광 영상을 동시에 제공하는 고해상도 위성이다. 그러나 다중분광센서의 복잡성과 보안성에 의해 영상이 제한적으로 제공되고 있어 KOMPSAT-2 위성영상을 이용한 다양한 연구가 미흡한 실정이다. 한편, 토지이용도의 제작은 다중분광 영상을 제공하는 위성영상을 이용하여 제작된다. 다중분광 영상이 제공하는 분광정보 및 공간정보 등으로 토지이용분류를 수행하거나 멀티센서 자료의 통합을 통한 토지이용분류 기법을 개발하여 제작하였다. 그러나 대부분 GSD 10m급 이상의 중 저해상도 위성영상을 이용하여 제작이 이루어져 수평위치 정확도 및 세부정보의 제공이 낮으며, 정보의 최신성이 결여되어 있다. 특히, 유역 치수안전도 평가를 위한 토지이용도 작성은 매우 중요한 부분을 차지하고 있으므로 이에 대한 연구가 필요하다. 이에 본 연구에서는 섬강유역을 대상으로 KOMPSAT-2 영상을 이용하여 유역 치수안전도 평가 및 치수계획 수립기술을 위한 토지이용도를 작성하고자 한다. 토지이용 분류방법은 감독분류와 무감독분류 방법을 조합하여 분류정확도를 개선시키는 하이브리드분류(hybrid classification) 방법을 이용하였으며, 분류기준의 선정은 환경부 토지이용분류 기준을 참고하여 1단위와 2단위 분류체계를 혼용하였다. 또한, 분류 후 후처리를 통하여 잡음을 제거하고 환경부의 토지이용도를 참조하여 육안판독으로 오분류된 지역을 보정하였다. 새롭게 작성된 토지이용도는 기존의 토지이용도와 비교 분석하여 토지이용변화 상황을 파악하고, 이를 통하여 KOMPSAT-2 영상의 토지이용도 개선 가능성을 검토하였다.

  • PDF