• 제목/요약/키워드: 다중센서 영상

검색결과 223건 처리시간 0.02초

모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식 (AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera)

  • 황승준;고하윤;백중환
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.471-479
    • /
    • 2018
  • 최근 안드로이드, iOS 등의 셋톱박스 기반의 스마트 TV에 대한 보급에 따라 제스처로 TV를 컨트롤 할 수 있는 새로운 접근을 제안한다. 본 논문에서는 모노 카메라 센서를 이용한 AdaBoost 기반 제스처 인식에 관한 알고리즘을 제안한다. 우선, 신체 좌표 추출을 위해 가우시안 배경 제거 및 Camshift 기반 자세 추적 및 추정 알고리즘을 사용한다. AdaBoost 학습 모델을 신체 정규화된 광역 및 지역 특징 벡터의 집합을 특징 패턴으로 하여, 속도가 다른 동작들을 인식할 수 있도록 하였다. 또한 속도가 다른 다양한 제스처를 인식하기 위해 다중 AdaBoost 알고리즘을 적용하였다. CART 알고리즘을 이용하여 성공적인 중요 특징 벡터를 확인하고 중요도가 낮은 특징벡터를 제거하는 방식을 적용하면서 분류 성공률이 높은 최적의 특징 벡터를 탐색하였다. 그 결과 24개의 주성분 특징 벡터를 찾았으며, 기존 알고리즘에 비해 낮은 오분류율(3.73%)과 높은 인식률(95.17%)을 지닌 특징 벡터 및 분류기를 설계하였다.

광학위성영상을 이용한 기계학습/PROSAIL 모델 기반 엽면적지수 추정 (Estimation of Leaf Area Index Based on Machine Learning/PROSAIL Using Optical Satellite Imagery)

  • 이재세;강유진;손보경;임정호;장근창
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1719-1729
    • /
    • 2021
  • 엽면적지수는 효율적인 산림관리를 수행하기 위해 필요한 정보를 제공한다. 현재 국내 지역에 가용한 고해상도 엽면적지수 자료는 유럽우주국의 Sentinel-2 위성 기반 자료가 있으나 알고리즘 개발에 국내 산림특성이 고려되지 않았고, 국내 지역에 대해 평가가 부족한 상태이다. 본 연구에서는 LAI-2200C 장비를 이용하여 엽면적지수 현장관측을 실시한 뒤, 최근 다양한 연구에서 사용되는 기계학습 알고리즘 및 PROSAIL 복사전달 모델을 기반으로 Sentinel-2 위성의 다중분광 센서 자료를 이용해 엽면적지수를 추정하여 기존 Sentinel-2 기반 엽면적지수 자료와 비교·분석을 진행하였다. 그 결과, 본 연구에서 개발한 모델은 기존 Sentinel-2 엽면적지수 자료와 비교하였을 때, 평균 bias 및 평균 RMSE의 차이가 각각 0.97 및 0.81로 과소추정 경향을 개선하며 낮은 오류를 나타내었다. 본 연구에서 개발된 엽면적지수 추정 알고리즘은 추후 국토 산림에 대한 보다 개선된 자료를 제공할 가능성을 제시하였다.

위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로 (Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011)

  • 윤선권;박경원;김종필;정일원
    • 한국수자원학회논문집
    • /
    • 제47권4호
    • /
    • pp.371-384
    • /
    • 2014
  • 본 논문에서는 천리안(Communication, Ocean and Meteorological Satellite; COMS)과 TRMM(Tropical Rainfall Measurement Mission)을 통하여 관측한 위성영상자료를 이용한 극치강우(Extreme Rainfall) 추정 알고리즘을 개발하였으며, 2011년 7월 집중호우를 대상으로 그 적용성을 평가하였다. TRMM/PR(TRMM/Precipitation Radar)과 AWS(Automatic Weather System) 자료를 이용하여 고도에 따른 멱급수 회귀방정식으로 Z-R관계식을 추정한 결과 $Z=303R^{0.72}$를 산출하였으며, 지상관측 자료와 비교한 결과 상관계수가 0.57로 분석되었다. 이 값과 TRMM/VIRS(TRMM/Visible Infrared Scanner)와의 관계를 이용하여 극치강우알고리즘을 개발하였으며, 천리안 위성에 적용하여 10분강 우를 추정한 결과 강우강도가 큰 경우에는 과소 추정하는 경향이, 작은 경우에는 과대 추정하는 경향이 있는 것으로 분석되었으나, 전반적인 패턴은 관측과 유사한 경향이 있는 것으로 분석되었다. 또한 이 알고리즘을 같은 센서를 이용하는 천리안 위성에 적용하여 AWS의 상관관계를 분석한 결과, 10분 강우량의 경우 상관계수는 0.517로 평균제곱근 오차는 3.146으로 분석되었고, 공간 상관행렬 오차의 평균은 -0.530~-0.228의 음의 상관을 보이는 것으로 분석되었다. 위성자료를 이용한 극치강우량 추정의 오차 발생 원인은 여러 가지 외부적인 요인으로 판단되며, 지속적인 알고리즘 개선 및 오차보정을 통한 정확도 개선이 필요한 것으로 사료된다. 본 연구의 결과는 추후 다양한 정지궤도위성의 이용을통 한 다중 원격탐사자료의 활용으로 보다 정확한 미계측 유역 수문자료 확충 및 실시간 홍수 예 경보 시스템 구축에 활용이 가능할 것으로 사료된다.