• Title/Summary/Keyword: 다중선형회귀분석모형

Search Result 105, Processing Time 0.034 seconds

Development of Multiple Linear Regression Model to Predict Agricultural Reservoir Storage based on Naive Bayes Classification and Weather Forecast Data (나이브 베이즈 분류와 기상예보자료 기반의 농업용 저수지 저수율 전망을 위한 저수율 예측 다중선형 회귀모형 개발)

  • Kim, Jin Uk;Jung, Chung Gil;Lee, Ji Wan;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.112-112
    • /
    • 2018
  • 최근 이상기후로 인한 국부적인 혹은 광역적인 가뭄이 빈번하게 발생하고 있는 추세이며 발생횟수 뿐 아니라 가뭄 심도 및 지속기간이 과거보다 크게 증가하여 그에 따른 피해가 커질 것으로 예측되고 있다. 특히, 2014~2015년도의 유례없는 가뭄으로 인해 저수지 용수공급이 제한되면서 많은 농가들이 피해를 입었다. 본 연구의 목적은 전국 농업용 저수지를 대상으로 기상청 3개월 예보자료를 활용 할 수 있는 농업용 저수지 저수율 다중선형 회귀 모형을 개발하여 저수율 전망정보를 생산하는 것이다. 본 연구에서는 전국에 적용 가능한 저수율 다중선형 회귀 모형개발을 위해 5개의 기상요소(강수량, 최고기온, 최저기온, 평균기온, 평균풍속)와 관측 저수지 저수율을 활용했다. 기상자료는 2002년부터 2017년까지의 기상청 63개 지상관측소로부터 기상관측자료를 수집하였다. 본 연구에서는 저수율 전망 단계를 세 단계로 나누었다. 첫 번째 단계로 농어촌공사에서 전국 511개 용수구역을 대상으로 군집분석 및 의사결정나무 분석을 통해 제시한 65개 대표저수지를 대상으로 기상자료 및 관측 저수율 자료를 이용하여 다중선형 회귀분석을 실시하였다. 수집한 기상요소와 저수율을 독립변수로 하여 월별 회귀식을 산정한 결과 결정계수($R^2$)는 0.51~0.95로 나타났다. 두 번째 단계로 대표저수지의 회귀분석 결과를 전국의 저수지로 확대하기 위해 나이브 베이즈 분류법을 적용하여 전국 3098개의 저수지를 65의 군집으로 분류하고 각각의 군집에 해당되는 월별 회귀식을 산정하였다. 마지막으로 전국 저수지로 산정된 회귀식과 농업 가뭄 예측을 위해 기상청의 GS5(Global Seasonal Forecasting System 5) 3개월 예보자료를 수집하여 회귀식에 적용해 2017년 전국 저수지의 3개월 저수율 전망정보를 생산하였다. 본 연구의 전국 저수지 군집결과 기반의 저수율 전망기술은 2017년도 관측 저수율과 비교한 결과 유의한 상관성을 나타냈으며 이 결과는 추후 농업용 저수지의 물 공급 및 농업가뭄 전망 자료로서 이용이 가능할 것으로 판단된다.

  • PDF

A Study on Estimation of Soil Moisture Multiple Quantile Regression Model Using Conditional Merging and MODIS Land Surface Temperature Data (조건부 합성기법과 MODIS LST를 활용한 토양수분 다중분위회귀모형 산정 연구)

  • Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.23-23
    • /
    • 2018
  • 본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.

  • PDF

Flood risk index optimization using multiple linear regression (다중선형회귀를 이용한 홍수위험지수 최적화)

  • Kim, Myojeong;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.283-283
    • /
    • 2016
  • 기후변화의 지역적 영향으로 호우의 강도와 빈도가 증가하고 있는 상황에서 수재해 대응을 위하여 다양한 기술들이 필요하며 특히 홍수 취약성에 대한 분석과 평가가 선행되어야 한다. 본 연구에서는 기존의 PSR(Pressure-State-Response) 모형과 DPSIR(Driving force-Pressure-StateImpact-Response 모형을 다중선형회귀 기법을 사용하여 최적화하였다(Fig. 1). 대상기간은 2008년부터 2013년까지이며, mod 1에서는 연도별로 다중선형회귀기법을 사용하여 최적 가중치를 산정하였고, mod 2에서는 대상기간(2008 ~ 2013) 전체에 대해 다중선형회귀기법을 사용하여 최적 가중치를 산정하는 방법을 적용하였다.

  • PDF

Prediction of damages induced by Snow using Multiple-linear regression and Artificial Neural Network model (다중선형회귀 및 인공신경망 모형을 이용한 대설피해에 따른 피해액 예측에 관한 연구)

  • Kwon, Soon Ho;Lee, Eui Hoon;Chung, Gunhui;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.20-20
    • /
    • 2017
  • 최근 기후변화 영향에 따라 전 세계적으로 인명피해 및 재산피해를 유발하는 자연재난이 지속적으로 증가하고 있으며, 그로 인한 자연재해의 규모가 점점 더 커지고 있다. 실제로 우리나라에서도 지난 1994 년에서 2013 년까지 지난 20 년간 자연재해에 의한 피해액은 12조 3천억 원으로 집계되었으며, 이 중 강우와 태풍에 의한 피해가 85 % 이고, 대설에 의한 피해는 약 13 % 로 자연재해 중 대부분의 피해는 강우 및 태풍에서 발생하지만, 폭설에 의한 피해도 적지 않은 것으로 나타났다. 이에 따라, 정확한 예측을 위해 신뢰도 높은 자료 구축을 통한 대설피해 예측에 관한 연구가 필요한 시점이다. 본 연구에서는 대설피해액 예측을 위해 우리나라의 63개 기상 관측소에서 관측한 적설심 자료 및 기상관측 자료와 사회 경제 자료 총 11개를 대설피해 예측을 위한 입력변수로 선정하고, 이를 기상관측소가 속한 도시의 면적에 따라 3개의 지역으로 구분하였다. 주성분분석을 활용하여 선정된 입력변수들을 4개의 주성분으로 구분하고, 인공신경망 및 다중선형 회귀 모형을 구성하여 각 지역별 대설피해 예측의 오차를 분석하였다. 적용결과, 인공신경망 모형을 이용한 대설피해 예측의 수정결정계수는 22.8 %~48.2 %를 나타냈고, 다중선형회귀 모형의 수정결정 계수는 9.2 %~39.7% 로 나타났다. 그러므로 인공신경망 모형이 다중회귀 모형보다 선택된 입력자료를 활용하여 대설피해를 예측하는 목적으로 조금 더 우수한 결과를 나타내었다. 향후 자료를 보완 및 모형의 고도화를 통해 보다 정확한 대설피해 예측 함수 개발이 가능할 것으로 기대된다.

  • PDF

Development of Regression Models Resolving High-Dimensional Data and Multicollinearity Problem for Heavy Rain Damage Data (호우피해자료에서의 고차원 자료 및 다중공선성 문제를 해소한 회귀모형 개발)

  • Kim, Jeonghwan;Park, Jihyun;Choi, Changhyun;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.801-808
    • /
    • 2018
  • The learning of the linear regression model is stable on the assumption that the sample size is sufficiently larger than the number of explanatory variables and there is no serious multicollinearity between explanatory variables. In this study, we investigated the difficulty of model learning when the assumption was violated by analyzing a real heavy rain damage data and we proposed to use a principal component regression model or a ridge regression model after integrating data to overcome the difficulty. We evaluated the predictive performance of the proposed models by using the test data independent from the training data, and confirmed that the proposed methods showed better predictive performances than the linear regression model.

Multivariate Analysis for Clinicians (임상의를 위한 다변량 분석의 실제)

  • Oh, Joo Han;Chung, Seok Won
    • Clinics in Shoulder and Elbow
    • /
    • v.16 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.

Estimation of Maximum Fresh Snow Depth using Regression Analysis (회귀분석을 이용한 최심신적설 추정식 개발)

  • Park, Heeseong;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.205-205
    • /
    • 2016
  • 우리나라의 겨울철 자연재해 중 대설에 의한 피해가 발생하는 빈도가 증가하고 있는 가운데 그 피해를 예측하고 대비하기 위한 연구들이 다수 진행되고 있다. 강설은 일단위로 측정하며, 매일 새롭게 내린 강설의 양인 최심신적설과 기존에 녹지 않고 쌓여 있던 깊이까지를 고려한 최심적설로 구분된다. 우리나라의 경우에는 갑작스럽게 내린 폭설에 의한 피해가 대부분이므로 최심신적설량을 예측하는 것이 매우 중요하다. 이에 본 연구에서는 다중회귀분석을 이용해 우리나라의 최심신적설량을 추정하기 위한 식을 개발하였다. 다중회귀분석을 위한 독립변수로는 해당 일에 예측된 강수량, 일평균기온, 일최고기온, 일최저기온을 사용하였으며, 강수량과 일평균기온의 상호작용을 고려할 수 있도록 모형을 구성하였다. 모형의 개발에는 전국 74개 기상관측소의 최심신적설 자료를 관측소 단위로 전체 자료의 2/3을 무작위로 추출하여 이용하였으며, 추출되지 않고 남은 1/3의 자료를 이용해 모형에 대한 검증을 실시하였다. 그 결과 상호작용항이 포함되지 않은 다중선형회귀모형에 비해 상호작용을 고려한 다중회귀모형의 예측력이 훨씬 우수하게 나타났다. 강수량과 기온이 정확하게 예측된다면 개발된 추정식을 이용해 간편하게 최심신적설량을 예측할 수 있어, 폭설에 대한 대비에 활용할 수 있을 것으로 판단된다.

  • PDF

Comparison of Different Multiple Linear Regression Models for Real-time Flood Stage Forecasting (실시간 수위 예측을 위한 다중선형회귀 모형의 비교)

  • Choi, Seung Yong;Han, Kun Yeun;Kim, Byung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.9-20
    • /
    • 2012
  • Recently to overcome limitations of conceptual, hydrological and physics based models for flood stage forecasting, multiple linear regression model as one of data-driven models have been widely adopted for forecasting flood streamflow(stage). The objectives of this study are to compare performance of different multiple linear regression models according to regression coefficient estimation methods and determine most effective multiple linear regression flood stage forecasting models. To do this, the time scale was determined through the autocorrelation analysis of input data and different flood stage forecasting models developed using regression coefficient estimation methods such as LS(least square), WLS(weighted least square), SPW(stepwise) was applied to flood events in Jungrang stream. To evaluate performance of established models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient (NSEC), mean absolute error (MAE), adjusted coefficient of determination($R^{*2}$). The results show that the flood stage forecasting model using SPW(stepwise) parameter estimation can carry out the river flood stage prediction better in comparison with others, and the flood stage forecasting model using LS(least square) parameter estimation is also found to be slightly better than the flood stage forecasting model using WLS(weighted least square) parameter estimation.

Development of Accident Forecasting Models in Freeway Tunnels using Multiple Linear Regression Analysis (다중선형 회귀분석을 이용한 고속도로 터널구간의 교통사고 예측모형 개발)

  • Park, Ju-Hwan;Kim, Sang-Gu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.145-154
    • /
    • 2012
  • This paper analyzed the characteristics of traffic accidents in all tunnels on nationwide freeways and selected some various independent variables related to accident occurrence in tunnels. The study aims to develop reliable accident forecasting models using the various dependent variables such as the number of accident (no.), no./km, and no./MVK. Finally, reliable multiple linear regression models were proposed in this paper. This study tested the validity verification of developed models through statistics such as $R^2$, F values, multicollinearity, residual analysis. The paper selected the accident forecasting models considering the characteristics of tunnel accidents and two models were finally proposed according to two groups of tunnel length. In the selected models, natural logarithm of ln(no./MVK) is used for the dependent variable and AADT, vertical slope, and tunnel hight are used for the independent variables. The reliability of two models was proved by the comparison analysis between field data and estimating data using RMSE and MAE. These models may be not only effective in evaluating tunnel safety under design and planning phases of tunnel but also useful to reduce traffic accidents in tunnels and to manage the traffic flow of tunnel.

Characteristics and Models of the Side-swipe Accident in the Case of Cheongju 4-legged Signalized Intersections (4지 신호교차로의 측면접촉사고 특성 및 사고모형 - 청주시를 사례로 -)

  • Park, Sang-Hyuk;Kim, Tae-Young;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.41-47
    • /
    • 2009
  • This study deals with the side-swipe accidents of 4-legged signalized intersections in Cheongju. The objectives are to analyze the characteristics of the accidents and to develop the related models. In pursuing the above, this study gives particular emphasis to finding the appropriate methodology to modelling. The main results are as follows. First, injuries were analyzed to be twice than property-only accidents in the side-swipe accidents. The accidents were evaluated to occur more in inside-intersection. Also, the accidents were analyzed to be almost the auto-related accidents and to be occurred by the unsafely-driving activity. Second, multiple linear regression models were evaluated to be more statistically significant than multiple non-linear. The most fitted models were analyzed to be the models with the number of accidents as the dependent variable. The factors of side-swipe accidents analyzed in this study were ADT, area of intersection, right-turn-only-lane, number of pedestrian crossings, limited speed of main road, maximum grade and number of signal phase.

  • PDF