In this paper a new model of storytelling related to patent in the field of business as a sort of Intellectual Property(IP) was proposed. The patent related storytelling is investigated in the view points of variety of customers, purposes and applications which is different from the conventional OSMU, transmedia or crossmedia storytelling. In business there are several stages related to patent such as the initial conceptualization and development of technology, apply for and registration of patent, legal conflict like patent invalidation trial and action for infringement of patent and damages, and the commercialization stage like development of product based on patent, advertisement and marketing. Multiple sources optimized to the purpose in each stage of patent related business as well as to multiple convergence application of a patent. Similarly, multi-use refers to the fact that storytelling can be applied in each stage of patent oriented business. The effectiveness and usefulness of proposed MSMU model is also investigated.
Changwon Industrial Complex is commonly framed as the best example of strong initiative of the Korean developmental state. And this explanation has been given in the theoretical frame of 'neo-Weberian accounts' i.e., strongly 'national-territorial' and state-centric terms of the predominant. I argue that a geopolitical economy approach focusing on the historical background of the development of Changwon Industrial Complex will shed light on crucial sociospatial dimensions of the Korean developmental state's industrial complex success. I examine, in particular, the multi-scalar processes through which the changes of the industrial complex building plans for the promotion of machine industry in 1960's have been influenced by the complex and dynamic interactions among social actors acting at diverse geographical scales. I show that the formation of the industrial complex in Korea was more heavily influenced by the interactions, contestations, and collaborations among social actors, acting in and through the state, rather than by the state initiative.
Architectural & Interior design communication is a process of exchanging information between architects and other professionals, clients, and prospectus users, and a design medium is a means of communication. Using non-immersive, conventional media, it is challenging for architects communicate physical details and users' activities in not yet built three-dimensional buildings to others. Recent advances online, Multi-User Virtual Environments (MUVEs) allow architects and other professionals to experience a virtually constructed building together using anthropomorphic avatars. In addition, MUVEs also enable them to be aware of the presence and activity of each other. Previous studies suggest that the aforementioned characteristics of MUVEs may facilitate communication between architects and others. But these are focused on communication in controlled experimental conditions. This paper discusses the ways in which MUVEs are applied for authentic and long-term collaboration, design studio, and cultural heritage reconstruction projects, produced by digital design group at the UC Berkeley and the Technion-Israel Institute of Technology, and analyzes the influences of MUVEs on those projects. MUVEs helped more precise communication between architects, electronic engineers, and medical staffs, who are collaborating for developing pioneering technology for hospitals. In design studios, MUVEs allowed students to experience other students' design outputs, and thus helped them share ideas mutually. In addition, in cultural heritage reconstruction projects, MUVEs were used for communicating with historians and residents in order to collect evidence. Based on this study, we propose that MUVEs have strong potential for enhancing the communication between architects and other professionals.
Around 70% of Korea is mountainous, an increase in tunnel construction. It's due to the growing interest of the public for the environment and land required for the road construction is very scarce. During construction of 'Daedong 1 tunnel' in the expressway expansion project between Naengjeong and Busan, there are shallow shaft due to this tunnel located in the valley and the shafts are separated, and penetrating location change was inevitable for construction was delayed because of complaint. So, we change the position of the penetrating by applying multi-channel TSP, and conducted a stability analysis. The analysis results showed that there is no problem on the stability of the tunnel. To secure the construction of additional stability, We installed instrument, performed mechanical excavation, added reinforcement at shallow shaft and conducted bench cut.
The Transactions of the Korea Information Processing Society
/
v.6
no.9
/
pp.2384-2392
/
1999
Software engineers are used to analyse the error behavior of computer programs using test cases which are collected for the testing phase when software errors are detected. In actual software testing and debugging, it is important to adopt dynamic slicing technique which is concerned on all the statements to be affected by the variables of current inputs and to use technique of its implementations. The traditional dynamic slicing has focused on the single slicing criterion algorithm. It has been thought that it is needed to develope and implement algorithm for used multiple criteria variables program slicing, which finds every slicing criterion variable where it is used multiple criteria variables. In this paper, we propose an efficient algorithm to make dynamic program slices when it has used multiple criteria variables. The results of the implementation are presented by the making table on execution history and the dynamic dependence graph. Also we can find that the proposed dynamic program slicing approach using multiple criteria variables is more efficient than the traditional single case algorithm on the practical testing environment.
In this paper, a new classification method based on the combination of semi-supervised learning with spatial similarity of adjacent pixels is presented for crop classification in inaccessible areas. Iterative classification based on semi-supervised learning is applied to extract reliable training data from both the initial classification result with a small number of training data, and classification results of adjacent pixels are also considered to extract new training pixels with less uncertainty. To evaluate the applicability of the proposed method, a case study of the classification of field crops was carried out using multi-temporal Landsat-8 OLI acquired in the Daehongdan region, North Korea. From a case study, the misclassification of crops and forests, and isolated pixels in the initial classification result were greatly reduced by applying the proposed semi-supervised learning method. In addition, the combination of classification results of adjacent pixels for the extraction of new training data led to the great reduction of both misclassification results and isolated pixels, compared to the initial classification and traditional semi-supervised learning results. Therefore, it is expected that the proposed method would be effectively applied to classify areas in which it is difficult to collect sufficient training data.
In order to rapidly identify four drums species, Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates, a highly efficient and quick method has been developed using multiplex polymerase chain reaction (PCR) with species-specific primers. Around 1.4 kbp of the mitochondrial COI gene sequences from the four drums species were aligned, and species-specific forward primers were designed, based on the single nucleotide polymorphism (SNP). The optimal conditions for PCR amplification were selected through cross-reactivity, using a gradient PCR method. The PCR results demonstrated species-specific amplification for each species at annealing temperatures between 50 and $62^{\circ}C$. Multiplex species-specific PCR (MSS-PCR) amplification reactions with four pairs of primers were performed for sixteen specimens of each species. MSS-PCR lead to a species-specific amplification of a 1,540 bp fragment in L. polyactis, 1,013 bp in A. nibe, 474 bp in L. crocea, and 182 bp in P. elongates, respectively. The four different sizes of each PCR product can be quickly and easily detected by single gel electrophoresis. The sensitivity of the MSS-PCR of the DNA was up to $0.1ng/{\mu}l$ as a starting concentration for the four different species tested. These results suggest that MSS-PCR, with species-specific primers based on SNP, can be a powerful tool in the rapid identification of the four drums species, L. polyactis, L. crocea, A. nibe, and P. elongates.
Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
Journal of Korea Water Resources Association
/
v.53
no.6
/
pp.395-408
/
2020
This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.
The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.
In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.