• Title/Summary/Keyword: 다중빔 위상배열안테나

Search Result 21, Processing Time 0.027 seconds

Radio transmission link design based on a test bed considering a multi-beam active phase array antenna (다중빔 능동위상배열 안테나를 고려한 테스트베드 기반 Radio 전송링크 설계)

  • Youn, Jong-Taek;Kim, Yongi;Park, Hongjun;Park, Juman
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1574-1580
    • /
    • 2021
  • This paper designs and presents the results of an air network simulation radio transmission link applied with a multi-beam active phase array antenna simulator in a testbed system for verifying an air network currently underway as a technology development task. Using the Ku band, the Radio transmission link was designed in consideration of the link budget to satisfy the requirements for the system being developed. Considering short-distance links and long-distance links, the required EIRP and G/T performance scales of multi-beam repeaters and mission planes were applied to confirm the minimum and maximum link margins based on Eb/No. In this Radio Transmission Link design, the application analysis results such as rainfall availability are used to effectively establish standards when selecting the operating radius of the multi-beam relay system and related system standards.

BER performance analysis by angle spreading effect in the DoA estimation and beam-forming using 3D phase array antenna (3D 위상 배열 안테나를 이용한 DoA 추정과 빔 형성시 각도 퍼짐에 의한 BER 성능 분석)

  • Lim, Seung-Gag;Kang, Dae-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2009
  • This paper deals with the performance comparison of jammer signal's angle spreading in the beamforming after the estimation of direction of arrival using 3D array antenna basis of the GPS signal. After the estimation of direction of arrival using array antenna, the beamforming is need for the direction of arrival by spatial filtering and the other direction are nulling for reducing intererence signal, it is possible to improving the received signal strength and quality. But we obtains the degraded performance by the angle spreading due to the multi-jammer signal in this process. In this paper, the MUSIC and LCMV algorithms are applied for the estimating the direction of arrival and for beamforming using the 5 types of 3D array antenna. we performs the comparison of performance by calculating the bit error rate applying the BPSK modem and the varying the azimuth and elevation angle of incoming jammer signal. As a result of simulation, the Curved (B) type 3D array antenna has a more better performance compared to the other type antenna.

  • PDF

Symmetric Microwave Lens with Uniform Insertion Loss for Broad-band and Wide Beam Steering Coverage (균일한 삽입손실을 갖는 광대역 빔 조향용 대칭형 초고주파 렌즈)

  • 김인선;이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • In this paper, a symmetric microwave lens to steer wide angle and to operate at broad band frequency range for a linear phased array transmitter was designed. To get accurate beam steering performance far a linear phased array transmitter, uniform amplitude transmission characteristics of microwave lens was focused. The measured result for the insertion loss deviation between Input and output ports of microstrip lens with 8 beam ports and 8 array ports was $\pm$3.1 ㏈ over 6~18 ㎓ band, which was very uniform characteristics. Using 8 elements linear array antenna, it was confirmed the radiation beam could be steered over $\pm$60$^{\circ}$ in azimuth. And the measured lens performance data and multi-beam steering pattern were presented.

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

System Design and Evaluation of Digital Retrodirective Array Antenna for High Speed Tracking Performance (고속 추적 특성을 위한 디지털 역지향성 배열 안테나 시스템 설계와 특성 평가)

  • Kim, So-Ra;Ryu, Heung-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.623-628
    • /
    • 2013
  • The retrodirective array antenna system is operated faster than existing techniques of beamforming due to its less complexity. Therefore, it is effective for beam tracking in the environment of fast vehicle. On the other hand, it also has difficulty in estimating AOA according to multipath environment or multiuser signals. To improve the certainty of estimating AOA), this article proposes hybrid digital retrodirective array antenna systme combined with MUSIC algorithm. In this paper, the digital retrodirective array antenna system is designed according to the number of antenna array by using only one digital PLL which finds angle of delayed phase. And we evaluate the performance of the digital retrodirective array antenna for the high speed tracking application. Performance is studied by simulink when the speed of mobile is 300km/h and the distance between transmitter and receiver is 100m and then we have to confirm the performance of the system in multi path environment. As a result, the mean of AOA (Angle Of Arrival) error is $4.2^{\circ}$ when SNR is 10dB and it is $1.3^{\circ}$ when SNR is 20dB. Consequently, the digital RDA shows very good performance for high speed tracking due to the simple calculation and realization.

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

A Calibration Technique for Array antenna based GPS Receivers (배열 안테나 기반 GPS 수신기에서의 교정 방안)

  • Kil, Haeng-bok;Joo, Hyun;Lee, Chulho;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.683-690
    • /
    • 2018
  • In this paper, a new signal processing technique is proposed for calibrating gain, phase, delay offsets in array antenna based anti-jamming minimum variance distortionless response (MVDR) global-positioning-system (GPS) receivers. The proposed technique estimates gain, phase and delay offsets across the antennas, and compensates for the offsets based on the estimates. A pilot signal with good correlation characteristics is used for accurate estimation of the gain, phase and delay offsets. Based on the cross-correlation, the delay offset is first estimated and then gain/phase offsets are estimated. For fine delay offset estimation and compensation, an interpolation technique is used, and specifically, the discrete Fourier transform (DFT) is employed for the interpolation technique to reduce the computational complexity. The proposed technique is verified through computer simulation using MATLAB. According to the simulation results, the proposed technique can reduce the gain, phaes and delay offset to 0.01 dB, 0.05 degree, and 0.5 ns, respectively.

A Study on the Control of Asymmetric Sidelobe Levels and Multiple Nulling in Linear Phased Array Antennas (선형 위상 배열 안테나의 비대칭 Sidelobe 레벨 제어 및 다중 Nulling에 관한 연구)

  • Park, Eui-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper newly proposes a methodology towards computing antenna element weights which are satisfying asymmetric sidelobe levels(SLLs) specified arbitrarily on both sides of the main beam pattern, in the linear phased array antenna pattern synthesis problem. Opposite to the conventional methods in which the element weights are directly optimized from the array factor, this method is based on the optimum perturbations of complex roots inherent to the Schelkunoff's polynomial form which is described for the array factor. From the proposed methodology, the capability of nulling the directions of multiple jammers is also possible by independently perturbing only the complex roots corresponding to each jamming direction, hence allowing an enhancement of the simplicity of the numerical procedure by means of a proper reduction of the dimension of the solution space. The complex weights over the array are then easily computed by substituting the optimally perturbed complex roots to the Schelkunoff's polynomial. Some examples are examined and numerically verified by substituting the extracted weights into the array factor equation.

Technology Trends in Communication Payload for the Broadband LEO Satellite Constellation (저궤도 군집 통신위성 탑재체 기술 동향)

  • Uhm, M.S.;Chang, D.P.;Lee, B.S.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.3
    • /
    • pp.41-51
    • /
    • 2022
  • This article presents an overview of the key technologies in the communications payload of broadband LEO satellite communications systems. In recent years, new developments have been realized for LEO satellite communications. SpaceX's Starlink, a technology leader in this field, offers premium services with satellites carrying in-house developed communications payloads. OneWeb, Amazon, Telesat, and Boeing are also developing LEO satellite communications payloads. The communications payload consists of user link antennas, inter-satellite link communications equipment, feeder link antennas, and a digital processor. Highly sophisticated technologies of compact active phased array antennas for generating multiple hopping beams and light laser communication equipment for ultra-high-speed inter-satellite communication will be applied to next- generation payloads.

Determination and Performance Evaluation of Codevectors Utilizing Phase Difference Distribution Characteristics of Circular Antenna Arrays (원형 안테나 배열의 위상 차이 분포 특성을 활용한 코드벡터 결정 방식 및 성능 평가)

  • Kim, Huiwon;Suh, Junyeub;Sung, Wonjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.3-9
    • /
    • 2016
  • Current mobile communication systems utilize the multiple-input multiple-output (MIMO) transmission technique as an important means to enhance the bandwidth efficiency. Accurate beamforming via channel estimation contributes to the signal-to-interference-plus-noise ratio (SINR) increase and the system performance improvement when MIMO transmission techniques are employed. Therefore, determination of beamforming vectors as well as the design of appropriate codebooks defining these codevectors play an important role in system operation. In this paper, we statistically analyze the phase difference between the channels corresponding to adjacent antenna elements in order to design an efficient codebook for uniform circular arrays (UCAs). We introduce new parameters which compensate for the additional phase difference observed in its probability density functions (PDFs). The performance of the proposed codebook is tested using the spatial channel model (SCM) to demonstrate its gain over the standard codebooks adopted in the long term evolution (LTE) Releases 8 and 10.