• Title/Summary/Keyword: 다중기후모형

Search Result 84, Processing Time 0.025 seconds

Forecasting reference evapotranspiration using statistically based long-term temperature prediction information (통계적 기반의 장기 기온예측정보를 이용한 기준증발산량 전망)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.390-390
    • /
    • 2021
  • 본 연구에서는 통계적 방법에 의해 예측된 미래기간의 기온정보와 기온기반의 기준증발산량 산정방법을 연계하여 한강권역을 대상으로 최대 12개월의 미래기간에 대한 기준증발산량을 전망하였다. 기온정보는 Kim et al. (2020)의 연구와 같이 글로벌 기후지수와의 원격상관성을 기반으로 개발된 다중회귀모형을 이용하여 미래기간(예측시점 기준 1~12개월)에 대해 월 평균기온을 예측하고 이를 상세화하여 한강권역 내 주요 ASOS 지점별로 최고/최저기온을 도출하였다. 기준증발산량은 Hamon 방법(Hamon, 1960, 1963)을 기반으로 각 지점별로 상세화된 최고/최저기온을 이용하여 동일한 미래기간(1~12개월)에 대해 산정하였다. 한강권역 전체에 대해 2015년 1월~2020년 12월의 월별 평균기온과 각 지점별 산정한 기준증발산량을 활용하여 기온 및 기준증발산량에 대한 예측성을 분석하였다. 한강권역 전체에 대해 예측된 월별 평균기온의 경우 실제 관측값과 비교하였을 때, PBIAS 4.2~6.4%, R2 0.97~0.98, NSE 0.97~0.98 등으로 매우 높은 예측성을 보였다. 지점별로 상세화된 기온정보를 이용하여 산정한 기준증발산량을 실제 기온으로부터 산정한 기준증발산량과 비교한 결과는 PBIAS 5.0~6.8%, R2 0.97~0.98, NSE 0.96~0.97로 기온에 대한 예측성과 유사하게 나타났다. 기온과 기준증발산량 모두 일부 월이나 일부 지점에서 관측값과 비교했을 때 다소 차이를 보이는 경우도 있었으나, 대상유역 전반적으로는 매우 안정적인 예측결과를 확인할 수 있었다. 기준증발산량에 대한 예측결과(미래 1~12개월)는 계절 및 월 단위의 유역 수자원 전망에 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

Development of a hybrid regionalization model for estimation of hydrological model parameters for ungauged watersheds (미계측유역의 수문모형 매개변수 추정을 위한 하이브리드 지역화모형의 개발)

  • Kim, Youngil;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.677-686
    • /
    • 2018
  • There remain numerous ungauged watersheds in Korea owing to limited spatial and temporal streamflow data with which to estimate hydrological model parameters. To deal with this problem, various regionalization approaches have been proposed over the last several decades. However, the results of the regionalization models differ according to climatic conditions and regional physical characteristics, and the results of the regionalization models in previous studies are generally inconclusive. Thus, to improve the performance of the regionalization methods, this study attaches hydrological model parameters obtained using a spatial proximity model to the explanatory variables of a regional regression model and defines it as a hybrid regionalization model (hybrid model). The performance results of the hybrid model are compared with those of existing methods for 37 test watersheds in South Korea. The GR4J model parameters in the gauged watersheds are estimated using a shuffled complex evolution algorithm. The variation inflation factor is used to consider the multicollinearity of watershed characteristics, and then stepwise regression is performed to select the optimum explanatory variables for the regression model. Analysis of the results reveals that the highest modeling accuracy is achieved using the hybrid model on RMSE overall the test watersheds. Consequently, it can be concluded that the hybrid model can be used as an alternative approach for modeling ungauged watersheds.

Long-term runoff prediction of Gyeongan-cheon watershed using statistically forecasted weather information (통계적 기상예측정보를 이용한 경안천 유출량 장기 전망)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.413-413
    • /
    • 2022
  • 본 연구에서는 통계적 방법으로 도출된 장기 기상예측정보를 이용하여 유역에서의 유출량 전망 가능성을 검토하였다. 먼저 한강권역의 월 강수량과 기온에 대해 글로벌 기후지수와의 원격상관성을 기반으로 다중회귀모형 기반의 통계적 예측모형을 구성하여 미래기간(1~12개월)에 대한 월 단위 기상예측정보를 도출하였다. 월 단위로 도출된 강수량과 기온은 통계적 상세화 기법을 통해 한강권역 주요 ASOS 관측소 지점별로 일 단위 강수량과 기온자료로 변환하였으며, 상세화된 일 자료를 유역모형인 SWAT의 입력자료로 활용하여 경안천 유역의 미래기간에 대한 유출량을 도출하였다. 유출량 예측성을 평가하기 위하여 과거기간(2003~2021년)을 대상으로 관측유출량과 예측기상정보로부터 산출된 예측유출량을 비교하였다. 각 월별로 예측된 유출량의 중앙값과 관측값의 적합도를 분석한 결과, PBIAS는 -5.2~-2.7%, RSR은 0.79~0.91, NSE는 0.34~0.38, r은 0.59~0.62로 강수량 및 기온의 예측성에 비해 낮게 나타났다. 전 기간에 대해 월별로 분석한 예측결과에 대한 3분위 확률은 5월, 6월, 7월, 9월, 11월은 평균 42.8%로 예측성이 충분한 것으로 나타났으나, 나머지 월에서의 평균 예측성은 17.3%로 매우 낮게 나타났다. 상세화된 기상정보를 이용하여 유역모델링을 통해 산정한 유출량에 대한 전망 결과는 기상예측결과에 비해 상대적으로 예측성이 낮은 것으로 분석되었다. 이는 관측값 자체에서 나타날 수 있는 불확실성에 기인할 수도 있으며, 유출량에 지배적인 영향을 주는 강수량의 예측성에 대한 문제가 유역 모델링 과정에서 증폭되어 나타나는 문제일 수도 있다. 또한 지점별 일 자료로 상세화되는 과정에서의 불확실성, 우리나라 여름철 유출량 변동성 등 여러 가지 요인이 복합적으로 영향을 주어 나타나는 것으로 생각된다. 향후 다양한 대상유역에 대한 검토와 기상예측모형의 보완, 상세화 과정에서의 불확실성 해소 등을 통해 예측성을 개선할 계획이다.

  • PDF

Water shortage assessment by applying future climate change for boryeong dam using SWAT (SWAT을 이용한 기후변화에 따른 보령댐의 물부족 평가)

  • Kim, Won Jin;Jung, Chung Gil;Kim, Jin Uk;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1195-1205
    • /
    • 2018
  • In the study, the water shortage of Boryeong Dam watershed ($163.6km^2$) was evaluated under future climate change scenario. The Soil and Water Assessment Tool (SWAT) was used considering future dam release derived from multiple linear regression (MLR) analysis. The SWAT was calibrated and verified by using daily observed dam inflow and storage for 12 years (2005 to 2016) with average Nash-Sutcliffe efficiency of 0.59 and 0.91 respectively. The monthly dam release by 12 years MLR showed coefficient of determination ($R^2$) of above 0.57. Among the 27 RCP 4.5 scenarios and 26 RCP 8.5 scenarios of GCM (General Circulation Model), the RCP 8.5 BCC-CSM1-1-M scenario was selected as future extreme drought scenario by analyzing SPI severity, duration, and the longest dry period. The scenario showed -23.6% change of yearly dam storage, and big changes of -34.0% and -24.1% for spring and winter dam storage during 2037~2047 period comparing with 2007~2016 period. Based on Runs theory of analyzing severity and magnitude, the future frequency of 5 to 10 years increased from 3 in 2007~2016 to 5 in 2037~2046 period. When considering the future shortened water shortage return period and the big decreases of winter and spring dam storage, a new dam operation rule from autumn is necessary for future possible water shortage condition.

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Estimation of regional flow duration curve applicable to ungauged areas using machine learning technique (머신러닝 기법을 이용한 미계측 유역에 적용 가능한 지역화 유황곡선 산정)

  • Jeung, Se Jin;Lee, Seung Pil;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1183-1193
    • /
    • 2021
  • Low flow affects various fields such as river water supply management and planning, and irrigation water. A sufficient period of flow data is required to calculate the Flow Duration Curve. However, in order to calculate the Flow Duration Curve, it is essential to secure flow data for more than 30 years. However, in the case of rivers below the national river unit, there is no long-term flow data or there are observed data missing for a certain period in the middle, so there is a limit to calculating the Flow Duration Curve for each river. In the past, statistical-based methods such as Multiple Regression Analysis and ARIMA models were used to predict sulfur in the unmeasured watershed, but recently, the demand for machine learning and deep learning models is increasing. Therefore, in this study, we present the DNN technique, which is a machine learning technique that fits the latest paradigm. The DNN technique is a method that compensates for the shortcomings of the ANN technique, such as difficult to find optimal parameter values in the learning process and slow learning time. Therefore, in this study, the Flow Duration Curve applicable to the unmeasured watershed is calculated using the DNN model. First, the factors affecting the Flow Duration Curve were collected and statistically significant variables were selected through multicollinearity analysis between the factors, and input data were built into the machine learning model. The effectiveness of machine learning techniques was reviewed through statistical verification.

Development of Examination Model of Weather Factors on Garlic Yield Using Big Data Analysis (빅데이터 분석을 활용한 마늘 생산에 미치는 날씨 요인에 관한 영향 조사 모형 개발)

  • Kim, Shinkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.480-488
    • /
    • 2018
  • The development of information and communication technology has been carried out actively in the field of agriculture to generate valuable information from large amounts of data and apply big data technology to utilize it. Crops and their varieties are determined by the influence of the natural environment such as temperature, precipitation, and sunshine hours. This paper derives the climatic factors affecting the production of crops using the garlic growth process and daily meteorological variables. A prediction model was also developed for the production of garlic per unit area. A big data analysis technique considering the growth stage of garlic was used. In the exploratory data analysis process, various agricultural production data, such as the production volume, wholesale market load, and growth data were provided from the National Statistical Office, the Rural Development Administration, and Korea Rural Economic Institute. Various meteorological data, such as AWS, ASOS, and special status data, were collected and utilized from the Korea Meteorological Agency. The correlation analysis process was designed by comparing the prediction power of the models and fitness of models derived from the variable selection, candidate model derivation, model diagnosis, and scenario prediction. Numerous weather factor variables were selected as descriptive variables by factor analysis to reduce the dimensions. Using this method, it was possible to effectively control the multicollinearity and low degree of freedom that can occur in regression analysis and improve the fitness and predictive power of regression analysis.

Meteorological Factors Associated with the Number of Emergency Room Patients with Wrist-Cutting Behavior (손목자해로 응급실에 내원한 환자수와 기후인자와의 관련성)

  • Han, Jae Hyun;Suh, Seung Wan;Cho, Gyu Chong;Kim, Jung Mi;Seo, Hong Taek;Jung, Yu Jin;Seong, Su Jeong;Hwang, Jae Yeon;Lee, Won Joon
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.28 no.2
    • /
    • pp.161-167
    • /
    • 2020
  • Objectives : Although the seasonality of suicide is a well-known phenomenon, little is reported about the seasonality of non-suicidal self-injury. The purpose of this study was to identify the seasonality of wristcutting behavior and to examine its relationship with meteorological factors. Methods : To identify the presence of seasonality, we investigated whether there was a difference in the average number of visits per month to an emergency room (ER) of an urban hospital for 226 patients with wrist-cutting behavior enrolled between December 2014 and May 2019. To ascertain significant meteorological factors, we used the multiple Poisson regression using generalized additive model with time, monthly temperature, monthly sunshine hour, and atmospheric pressure in the prior month as explanatory variables. Results : In males, the average number of monthly visits to the ER for wrist cutting behavior differed by month and was the highest in September (male : p=0.048, female : p=0.21, total : p=0.28). As a result of multiple regression analysis, the average number of patients admitted to the ER for wrist cutting behavior was related to the interaction between atmospheric pressure in the prior month and temperature in males (p=0.010), and showed a positive correlation with sunlight in females [p=0.044, β=4.70×10-3, 95% CI=(1.19×10-4, 9.27×10-3)]. Conclusions : Wrist cutting behavior shows seasonality in male, which is associated with changes in meteorological variables.

Analysis of the Crop Damage Area Related to Flood by Climate Change Using a Constrained Multiple Linear Regression Model (구속 다중선형회귀 모형을 이용한 기후변화에 따른 농작물 홍수 피해 면적 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • In this study, the characteristics of crop damage area by flooding for 113 middle range watersheds during 2000-2016 were analyzed and future crop damage area by flooding were analyzed using 13 GCM outputs such as hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount associated with RCP 4.5 and RCP 8.5 scenarios and watershed characteristic data such as DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity, and crop damage area by flooding. A constrained multiple linear regression model was used to construct the relationships between the crop damage area by flooding and other variables. Future flood index related to crop damage may mainly increase in the Mankyung watershed, Southwest part of Youngsan and Sumjin river basin and Southern part of Nackdong river basin. Results are useful to identify watersheds which need to establish strategies for responding to future flood damage.

Construction of Intensity-Duration-Frequency Curve Using a Spatial-Temporal Downscaling Approach of GCM (GCM의 시간적, 공간적 축소화기법 이용한 미래의 IDF곡선 생성)

  • Oh, Jin-Ho;Chung, Eun Sung;Lee, Kil Seong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.175-175
    • /
    • 2011
  • IDF 곡선은 수리구조물의 설계에 이용되며 본 연구에서는 기후변화를 고려한 GCM의 시간적 공간적 축소화기법을 통하여 미래의 IDF 곡선을 생성하였다. GCM자료로는 HadCM3과 CGCM3의 지역주의와 경제발전을 지향하는 A2시나리오를 이용하였다. GCM자료에 대한 공간적인 축소화기법으로 다중회귀 모형인 SDSM(Statistical DownScaling Model)을 이용하여 2030년, 2050년, 2080년의 미래의 일강우 자료를 생성하였다. 이를 다시 시간적 축소화기법인 GEV분포를 이용한 Scaling-Invariance기법을 적용하여 시단위의 강우자료를 생성하였다. 이를 통해 최종적으로 HadCM3과 CGCM3에 대한 각각 미래의 IDF곡선을 생성하였다. CGCM3의 경우 지속적인 강우강도의 증가를 보였지만 HadCM3의 경우 2050년대 감소하다 2080년대 다시 증가하는 양상을 보였다. 또한 CGCM3의 경우 HadCM3의 경우보다 좀 더 높은 강우 강도를 보였다. 본 연구의 대상지역은 서울지역이며 생성된 자료의 신뢰성을 확보하기위하여 서울기상관측소의 1961년부터~2000년까지의 일단위 강우자료를 이용하여 검 보정을 수행하였다.

  • PDF