• Title/Summary/Keyword: 다중기판

Search Result 162, Processing Time 0.024 seconds

Effect of Jet Location on Impactor's Particle Collection Efficiency (가속노즐의 배열이 임팩터의 입자채취효율에 미치는 영향)

  • 권순박;임경수;이규원;지준호;배귀남
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.326-327
    • /
    • 2000
  • May(1945)에 의하여 임팩터가 개발된 이후 임팩터의 단별 분리입경의 정확성을 증가시키고, 기판에서 입자의 채취량을 늘리며, 임팩터 내부의 입자손실과 기판에서 입자가 충돌하여 튀어나오는 것(bounce)을 줄일 수 있는 방법 등이 꾸준히 연구되고 있다. 가속 노즐의 형상을 사각형에서 원형으로 변경하여 분리효율곡선의 기울기(stiffness)를 증가시킬 수 있었고(Mitchell and Filcher, 1959), 임팩터의 한 단에 여러 개의 가속 노즐을 가공한 다중 노즐(multi-jet) 임팩터를 사용함으로써 단의 분리입경을 낮추고, 입자의 채취량을 늘릴 수 있게 되었다(Anderson, 1958). (중략)

  • PDF

Synthesis of vertically aligned thin multi-walled carbon nanotubes on silicon substrates using catalytic chemical vapor deposition and their field emission properties (촉매 화학 기상 증착법을 사용하여 실리콘 기판위에 수직 정렬된 직경이 얇은 다중층 탄소나노튜브의 합성과 그들의 전계방출 특성)

  • Jung, S.I.;Choi, S.K.;Lee, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.365-373
    • /
    • 2008
  • We have succeeded in synthesizing vertically aligned thin multi-walled carbon nanotubes (VA thin-MWCNTs) by a catalytic chemical vapor deposition (CCVD) method onto Fe/Al thin film deposited on a Si wafers using an optimum amount of hydrogen sulfide ($H_2S$) additive. Scanning electron microscope (SEM) images revealed that the as-synthesized CNT arrays were vertically well-oriented perpendicular to the substrate with relatively uniform length. Transmission electron microscope (TEM) observations indicated that the as-grown CNTs were nearly catalyst-free thin-MWCNTs with small outer diameters of less than 10nm. The average wall number is about 5. We suggested a possible growth mechanism of the VA thin-MWCNT arrays. The VA thin-MWCNTs showed a low turn-on electric field of about $1.1\;V/{\mu}m$ at a current density of $0.1\;{\mu}A/cm^2$ and a high emission current density about $2.5\;mA/cm^2$ at a bias field of $2.7\;V/{\mu}m$. Moreover, the VA thin-MWCNTs presented better field emission stability without degradation over 20 hours (h) at the emission current density of about $1\;mA/cm^2$.

Analysis of Multichip Module-Laminate Techniques (Laminate 다중칩 패키징기술 동향분석)

  • Kim, Yeong-Jin
    • Electronics and Telecommunications Trends
    • /
    • v.11 no.1 s.39
    • /
    • pp.29-47
    • /
    • 1996
  • 본 고는 전자통신시스템 및 단말기의 소형화 및 고기능화를 위하여 대두되고 있는 다중칩 모듈(Multichip Module; MCM)중 Laminate기술을 기본으로 하며 대량생산이 가능한 Multichip Module-Laminate(MCM-L)기술에 대하여 논하고 있다. 본 내용에는 전기 및 열특성을 결정하는 기판재료, Laminate에서의 Via 및 Pad의 한계, MCM의 성능과 관련된 시험방법 등이 있으며, 마지막으로, 통신 및 타분야의 MCM 응용사례를 조사분석하고 향후 MCM의 기술발전방향을 예측해 보았다.

평판형 직사각 유도결합 플라즈마 표면 처리 시스템의 수치 모델링

  • Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.249-249
    • /
    • 2014
  • 대면적 사각형 기판의 플라즈마 표면처리를 위한 유도 결합 플라즈마 발생 시스템의 수치 계산을 유체 모델을 이용하여 진행하였다. 연산 자원이 많이 요구되는 3차원 모델임을 감안하여 준중성 조건을 이용한 간략화 알고리즘을 사용하였다. Poisson 방정식을 풀지 않고 준중성 조건에 의한 양극성 전기장을 계산하여 이용한다. 쉬스는 모델을 이용하여 처리하였다. 1차적으로 사각 spiral 형태의 안테나를 가정하여 LCD 3세대 급의 기판을 대상으로 작성하였다. 다중 분할을 하지 않고 4개의 가지를 갖는 single spiral을 적용하였고 1.125 turn의 low impedance 구조에 대해서 계산하였다. Ar을 이용한 sputter etching 공정을 타겟으로 하여 기판에서의 Ar 이온 밀도 분포의 균일도가 어떤 설계 변수에 의해서 영향을 받는지를 중점적으로 계산하였다.

  • PDF

Analysis of the Spectrum Characteristics of Etched Glass Surface by Incident Angle (입사각에 따른 에칭 기판의 분광특성분석)

  • Kim, Haemaro;Lee, Don-Kyu
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1077-1081
    • /
    • 2019
  • Lights that enter the surface of a solar cell cannot be absorbed inside all of the solar cells, and some of it is reflected off the surface of the substrate, resulting in loss. Because of this, many studies are underway to reduce reflective losses on the surface of substrates or to steam the generated charge inside the solar cell. In this paper, surface treatment for forming a rough surface by wet etching the surface of a glass substrate is advanced, and structural characteristics of the rough surface are analyzed. Then, spectral characteristics by changing the angle of the glass substrate to which light enters the company are analyzed. When the light entering the company is investigated on a etched surface, it is confirmed that the probability of re-absorbing the light inside the glass substrate by multiple reflection is increased. When entering the light while changing the angle of the glass substrate, the transmission and reflection performance of the light are not changed.

PCB Ground Structure Improvement for Radiation Noise Reduction (방사 잡음 감소를 위한 인쇄회로기판의 접지 구조 개선)

  • 송상화;권덕규;이해영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.233-238
    • /
    • 2003
  • With the growth of high speed circuit, unwanted system noise is increased and multipoint ground is used to reduce this noise. PCB screw ground structure has radiation noise by ground loop between screws. In order to solve this problem, in this paper, we proposed improved PCB ground structure. Proposed structure improves noise absorption by using microwave absorber and conductive copper tape. We measured radiation PCB noise in the range of 1 ㎓ to 3 ㎓ to investigate proposed structure usefulness. From these results, under 2 ㎓ range proposed structure has noise reduction by 2.62 dBuV/m, which compared with screw ground.

A Gerber-Character Recognition System with Multiple Recognizers and a Verifier (다중 인식기 및 검증기를 갖는 거버문자 인식 시스템)

  • Oh, Hye-Won;Park, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.20-27
    • /
    • 2004
  • We propose the character recognition system for Gerber files. The Gerber file is the vector-formatted drawing file for PCB manufacturing, which includes various symbols, figures and characters. Also, the characters are written in horizontal, vertical, and reverse-vortical directions. In this paper, we newly propose the Gerber-character recognition system to recognize all of component names located in PCB. To improve the performance, we develop the multiple recognizers by neural networks and the verifier considering the structural features. The developed system has been installed to the auto-programming software for PCB assembly and inspection machines.

Design of a Double-Faced Monopole Antenna Using the Coupling Effect of Induced Currents (유도 전류의 커플링 효과를 이용한 모노폴 안테나 설계)

  • Choi, Young;Lee, Seungwoo;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1327-1336
    • /
    • 2012
  • In this paper, the dual-faced monopole antenna, which is arranged by numerous rectangular ring patches in sequence for the multi-bands is proposed. The ring type structure of the patch can be increased the bandwidth. Therefore the bandwidth and beam width are improved by using multiple arrayed patches. When the ring type patches are inserted serially, the resonance frequencies are occurred by the current flow from the first ring patch. It is possible because the gap between the patches is very narrow. In addition, if the patches are composed on the same plane as the feed-line, fabrication could be very difficult because the gap between the patches is extremely narrow. The thickness and permittivity of the antenna, moreover, are very important parameters because both sides of the substrate are used. We finally found the optimal thickness and permittivity to generate the coupling effect by simulation. All patches are consisted of 4-steps which the patch size was decreased 85 % by each step. In conclusion, the resonant frequency bands are 1.75~2.6 GHz(850 MHz), 3.24~3.46 GHz(220 MHz), 3.8~4.0 GHz(200 MHz), and 4.4~4.9 GHz(500 MHz).

Multi-Band Chip Slot Antenna for Mobile Devices (무선 통신 기기에 적합한 다중 대역 칩 슬롯 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1264-1271
    • /
    • 2009
  • In this paper, the chip slot antenna which is used for mobile devices and designed for multi-band is proposed. The proposed antenna is comprised of a chip antenna(10 mm$\times$20 mm$\times$1.27 mm) and a system circuit board(30 mm$\times$60 mm$\times$0.8 mm). The chip slot antenna is mounted on the system circuit board and the end of F-type strip line which is patterned on the chip antenna is connected by a via with a ground plane of the system circuit board. So, a chip antenna radiates effectively the energy by transition between a microstrip line of the system circuit board and a open slot structure of the chip antenna. In the results of proposed antenna, impedance bandwidth of 3:1 VSWR(-6 dB return loss) is 1.98 GHz(1.61~3.59 GHz) and 0.8 GHz(5.2~6 GHz). So, it can cover multi-band of DCS, PCS, UMTS, WLAN. The proposed antenna can be applied to mobile devices.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.