• Title/Summary/Keyword: 다중기판

Search Result 162, Processing Time 0.02 seconds

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

The characteristic of InGaN/GaN MQW LED by different diameter in selective area growth method (선택성장영역 크기에 따른 InGaN/GaN 다중양자우물 청색 MOCVD-발광다이오드 소자의 특성)

  • Bae, Seon-Min;Jeon, Hun-Soo;Lee, Gang-Seok;Jung, Se-Gyo;Yoon, Wi-Il;Kim, Kyoung-Hwa;Yang, Min;Yi, Sam-Nyung;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2012
  • In general, the fabrications of the LEDs with mesa structure are performed grown by MOCVD method. In order to etch and separate each chips, the LEDs are passed the RIE and scribing processes. The RIE process using plasma dry etching occur some problems such as defects, dislocations and the formation of dangling bond in surface result in decline of device characteristic. The SAG method has attracted considerable interest for the growth of high quality GaN epi layer on the sapphire substrate. In this paper, the SAG method was introduced for simplification and fabrication of the high quality epi layer. And we report that the size of selective area do not affect the characteristics of original LED. The diameter of SAG circle patterns were choose as 2500, 1000, 350, and 200 ${\mu}m$. The SAG-LEDs were measured to obtain the device characteristics using by SEM, EL and I-V. The main emission peaks of 2500, 1000, 350, and 200 ${\mu}m$ were 485, 480, 450, and 445 nm respectively. The chips of 350, 200 ${\mu}m$ diameter were observed non-uniform surface and resistance was higher than original LED, however, the chips of 2500, 1000 ${\mu}m$ diameter had uniform surface and current-voltage characteristics were better than small sizes. Therefore, we suggest that the suitable diameter which do not affect the characteristic of original LED is more than 1000 ${\mu}m$.