• Title/Summary/Keyword: 다익 홴

Search Result 4, Processing Time 0.015 seconds

Some Relations Between the Geometric Parameters and Internal Flow Field Characteristics in Multiblade Fan/Scroll System (다익 홴/스크롤 시스템의 형상변수와 내부 유동장 특성과의 관계)

  • Maeng, Joo-Sung;Yoo, Dal-Hyun;Lee, Kwang-Ho;Park, ln-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1139-1147
    • /
    • 2000
  • This paper describes that the size of inactive zone can be directly applied to design multiblade fan/scroll system. From the experimental studies using a five hole pitot tube and smoke test, it is found that the size of inactive zone has linear relations with the mean velocity of impeller inlet and cut-off angle gives a great influences to the fan efficiency. For the practical design, a function related with geometric parameters(i.e. inner radius, cord length, cut-off clearance and cut-off angle) of fan/scroll system is suggested. By using these formulas, the size and distribution of inactive zone can be predicted without the measurements through the full domain, it can be possible to use them to know the efficiency improvement for new model designed.

Shape Optimization of Cut-Off in Multiblade Fan/Scroll System Using CFD and Neural Network (신경망 기법을 이용한 다익 홴/스크롤 시스템의 컷오프 최적화)

  • Han, S.Y.;Maeng, J.S.;Yoo, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.365-370
    • /
    • 2001
  • In order to minimize unstable flow occurred at a multiblade fan/scroll system, optimal angle and shape of cut-off was determined by using two-dimensional turbulent fluid field analyses and neural network. The results of CFD analyses were used for learning as data of input and output of neural network. After learning neural network optimization process was accomplished for design variables, the angle and the shape of cut-off, in the design domain. As a result of optimization, the optimal angle and shape were obtained as 71 and 0.092 times the outer diameter of impeller, respectively, which are very similar values to previous studies. Finally, it was verified that the fluid field is very stable for optimal angle and shape of cut-off by two-dimensional CFD analysis.

  • PDF

Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Neural Network (신경망 최적화 기법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화)

  • Han, Seog-Young;Maeng, Joo-Sung;Yoo, Dal-Hyun;Jin, Kyong-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1341-1347
    • /
    • 2002
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and neural network. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. The distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure have qualitative similarity. The results of two-dimensional CFD were used for teaming as target values of neural network. The optimal angle and radius of cut-off were determined as 71$^{\circ}$and 0.092 times the outer diameter of impeller, respectively. It is quantified in the previous report that the optimal angle and radius of cut-off are approximately 72$^{\circ}$and 0.08 times the outer diameter of impeller, respectively.

Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Response Surface Method (반응표면법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화)

  • 한석영;맹주성;황영민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.225-231
    • /
    • 2003
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and response surface method. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. In order to examine the validity of the two-dimensional CFD the distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure show qualitatively similarity. The results of two-dimensional CFD were used for constructing the objective function with design variables using response surface method. The optimal angle and radius of cut-off were determined as $72.4^{\circ}$ and 0.092 times the outer diameter of impeller, respectively. It is quantified the previous report that the optimal angle and radius of cut-off are approximately $72^{\circ}$ and 0.08 times the outer diameter of impeller, respectively.