• Title/Summary/Keyword: 다엽콜리메이터

Search Result 35, Processing Time 0.027 seconds

Comparative evaluation for leaf position accuracy according to gantry angle variation in MLC quality assurance using electronic portal imaging device(EPID) and GafChromic EBT3 film (전자포탈영상장치(EPID)와 GafChromic EBT3 film을 이용한 다엽콜리메이터 정도관리 시 갠트리 각도 변화에 따른 엽의 위치 정확성 비교 평가)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Lee, Sun Young;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Objectives: The purpose of this study was to evaluate the error of the leaf position accuracy of the MLC due to the gravity effect according to the gantry angle by using picket fence test using EPID and GafChromic EBT3 film. Materials and Methods: A 5 cm solid phantom was placed on the table and the SAD was set to 100 cm. The EBT3 film was placed exactly over the solid phantom and covered a 1.5 cm solid phantom and the picket fence test was performed. The EPID was measured under the same conditions as the EBT3 film at SID 100 cm. The gantry angles were measured at $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$ in order to evaluate the position of the MLC according to the gantry angle. For the geometric evaluation of the MLC, the leaf position accuracy of the MLC was analyzed using the analysis program. Results: In case of EPID, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.18 mm, 0.31 mm, 0.20 mm, 0.26 mm on the average and the maximum values of the errors were respectively 0.44 mm, 0.54 mm, 0.34 mm, 0.44 mm. In case of EBT3 film, when the gantry angle was changed to $0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, the difference of the position errors of the leaves was 0.19 mm, 0.21 mm, 0.19 mm, 0.31 mm on the average and the maximum values of the errors were respectively 0.35 mm, 0.45 mm, 0.36 mm, 0.48 mm. Conclusion: In this study, we analyzed the position error of the leaf of the MLC according to the gantry angle, and confirmed the position error of the leaf by gravity effect. As a result of comparing the leaf position accuracy using EPID and EBT3 film according to the variation of gantry angle, a larger error occurred in the error analysis method using EPID than that of EBT3 film. Therefore, in the case of IMRT based on MLC, as well as verification of accurate dosimetry should be conducted, it is considered that the quality control and verification for the precise operation of the MLC will be needed. and it is necessary to compare and verify the method of analysis.

  • PDF

Spinal Cord Partial Block Technique Using Dynamic MLC (동적 다엽콜리메이터를 이용한 척수의 부분 차폐 기법)

  • 조삼주;이병용;이상욱;안승도;김종훈;권수일;최은경
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck or the thorax region. It is not an easy task to maintain the spinal cord dose below tolerance and to keep the clinically acceptable dose to the PTV in this region. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. This technique is an extension of the conventional treatment planning. In the beginning the beam directions are selected as same as the conventional treatment planning to encompass the PTV, then the partial block are designed to shield the spinal cord. The plan comparisons between the conventional therapy plan and the PTB plan were performed to evaluate the validity of this technique. The mean dose and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan generated better results than the conventional treatment plan and it was proved to be useful for the H&N region.

  • PDF

Commissioning of a micro-MLC (mMLC) for Stereotactic Radiosurgery (방사선수술용 4뱅크 마이크로 다엽콜리메이터의 인수 검사)

  • Jeong, Dong-Hyeok;Shin, Kyo-Chul;Kim, Jeung-Kee;Kim, Soo-Kon;Moon, Sun-Rock;Lee, Kang-Kyoo
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • The 4 bank mico-MLC (mMLC; Acculeaf, Direx, Isral) has been commissioned for clinical use of linac based stereotactic radiosurgery. The geometrical parameters to control the leaves were determined and comparisons between measured and calculated by the calculation model were performed in terms of absolute dose (cGy/100 MU). As a result of evaluating calculated dose for various field sizes and depths of 5 and 10 cm in water in the geometric condition of fixed SSD (source to surface distance) and fixed SCD (source to chamber distance), most of differences were within 1% for 6 MV and 15 MV x-rays. The penumbral widths at the isocenter were approximately evaluated to 0.29~0.43 cm depending on the field size for 6 MV and 0.36~0.51 cm for 15 MV x-rays. The average transmission and leakage for 6 MV and 15 MV x-rays were 6.6% and 7.4% respectively in single level of leaves fully closed. In case of dual level of leaves fully closed the measured transmission is approximately 0.5% for both 6 MV and 15 MV x-rays. Through the commissiong procedure we could verify the dose characteristics of mMLC and approximately evaluate the error ranges for treatment planning system.

  • PDF

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

The Accuracy Evaluation according to Dose Delivery Interruption and Restart for Volumetric Modulated Arc Therapy (용적변조회전 방사선치료에서 선량전달의 중단 및 재시작에 따른 정확성 평가)

  • Lee, Dong Hyung;Bae, Sun Myung;Kwak, Jung Won;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • Purpose: The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Materials and Methods: Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. Results: The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. Conclusion: As a result, We could make sure that the interruption of this investgation are not enough to seriously affect dose delivery of VMAT by analyzing the measured data. But this investigation did not reflect all cases about interruptions and errors regarding the movement of a gantry rotation, collimator and patient So, We should continuously maintain a treatment machine and program to deliver the accurate dose when we perform the VMAT for the many kinds of cancer patients.

  • PDF

The Analysis of a Cerrobend Compensator and a Electronic Compensator Designed by a Radiation Treatment Planning System (방사선치료계획장치로 설계된 Cerrobend 선량보상체와 전자 선량보상체의 제작 및 특성 분석)

  • Nah Byung-Sik;Chung Woong-Ki;Ahn Sung-Ja;Nam Taek-keun;Yoon Mi-Sun;Song Ju-Young
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.82-88
    • /
    • 2005
  • In this study, the physical compensator made with the high density material, Cerrobend, and the electronic compensator realized by the movement of a dynamic multileaf collimator were analyzed in order to verify the properness of a design function in the commercial RTP (radiation treatment planning) system, Eclipse. The CT images of a phantom composed of the regions of five different thickness were acquired and the proper compensator which can make homogeneous dose distribution at the reference depth was designed in the RTP. The frame for the casting of Cerrobend compensator was made with a computerized automatic styrofoam cutting device and the Millennium MLC-120 was used for the electronic compensator. All the dose values and isodose distributions were measured with a radiographic EDR2 film. The deviation of a dose distribution was $\pm0.99 cGy\;and\;\pm1.82cGy$ in each case of a Cerrobend compensator and a electronic compensator compared with a $\pm13.93 cGy$ deviation in an open beam condition. Which showed the proper function of the designed compensators in the view point of a homogeneous dose distribution. When the absolute dose value was analyzed, the Cerrobend compensator showed a $+3.83\%$ error and the electronic compensator showed a $-4.37\%$ error in comparison with a dose value which was calculated in the RTP. These errors can be admtted as an reasonable results that approve the accuracy of the compensator design in the RTP considering the error in the process of the manufacturing of the Cerrobend compensator and the limitation of a film in the absolute dosimetry.

  • PDF

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.

Dosimetric Characteristics on Penumbra Regions of the Multileaf Collimator as Compared with the Lead Alloy Block (다엽 콜리메이터(Multileaf Collimator)와 합금납 차폐물(Lead Alloy Block)의 반 그림자영역의 선량 분포상의 특성 비교)

  • Lee Sang Wook;Oh Young Tack;Kim Woo Cheol;Keum Ki Chang;Yoon Seong Ick;Kim Hyun Soo;Park Won;Chu Seong Sil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.391-396
    • /
    • 1995
  • Purpose : The Conformal Radiation Therapy has bee widely used under favour of development of computer technologies. The delivery of a large number of static radiation fields are being necessary for the conformal irradiation. In this paper we investigate dosimetric characteristics on penumbra regions of a multileaf collimator(MLC), and compare to those of lead alloy block for the optimal use of the system in 3-D conformal radiotherapy. Materials and Methods : The measurement of penumbra by MLC or lead alloy block was performed with 6 or 10 MV X-rays. The film was positioned at a dmax depth and 10 cm depth, and its optical density was determined using a scanning videodensitometer. The effective penumbra, the distance from $80{\%}$ to $20{\%}$ isodose lines and $90{\%}$ to $10{\%}$ were analyzed as a function of the angle between the direction of leaf motion and the edge defined by leaves. Results : Increasing MLC angle ($0-75^{\circ}$) was observed with increasing the penumbra widths and the scalloping effect. There was no definite differences of penumbra width from $80{\%}$ to $20{\%}$ isodose lines, while being the small increase of penumbra width from $90{\%}$ to $10{\%}$ isodose line varing the depth and energy. The effective penumbra width of lead alloy block are agree resonably with those of MLC within 4.8mm. Conclusion : The comparative qualitative study of the penumbra between MLC and lead alloy block demonstrate the clinical acceptability and suitability of the multileaf collimator for 3-D conformal radiotherapy.

  • PDF

Report on the External Audits Conducted by Korean Society of Medical Physics (한국의학물리학회 선형가속기 외부 품질관리 실시 현황보고)

  • Huh, Hyun Do;Cho, Kwang Hwan;Cho, Sam Ju;Choi, Sang Hyoun;Kim, Dong Wook;Hwang, Ui-Jung;Kim, Ki Hwan;Min, Chul Kee;Choi, Tae Jin;Oh, Young Kee;Lee, Seoung Jun;Park, Dahl;Park, Sung-Kwang;Ji, Young Hoon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • The aim of this work is to verify the self-quality assurances in medical institutions in Korea through the external audits by the group of experts and have a mutual discussion of the systematic problems. In order to validate the external audits 30 of 80 medical institutions across the nation were picked out considering the regional distribution and the final 25 institutions applied voluntarily to take part in this work. The basic rules were setup that any information of the participants be kept secrete and the measurements be performed with the dosimetry system already verified through intercomparision. The outputs for 2 or more photon beams, the accuracy of gantry rotation and collimator rotation and the poistional accuracy of MLC movement were measured. The findings for the output measurement showed the differences of -0.8%~4.5%, -0.79%~3.01%, and -0.7%~0.07% with respect to that of the verified dosimetry system for the 6MV, 10MV, and 15MV, respectively. For the reference absorbed dose 8 (16%) of 50 photon beams in 25 medical institutions differed 2.0% or greater from the reference value. The coincidences of Field size with x-ray beam and radiation isocenters of Gantry roration and collimator rotation gave the results of within ${\pm}2$ mm for every institute except 2 institutions. The positional accuracy of MLC movement agreed to within ${\pm}1$ mm for every institute. For the beam qualities of 6 MV photon beams kQ values showed the distribution within 0.4% between maximum and minimum. For the protocols 21 institutions (84%) used absorbed dose to water based protocol while 4 insitutions (16%) used air kerma based one. 22 institutions employed the SSD technique while 3 institutions did the SAD one. External audit plays an important role in discovering the systematic problems of self-performing Quality Assurances and having in depth discussion for mutual complementation. Training experts of international level as well as national support system are required so that both the group of experts of medical physicists and government laboratory could perform together periodical and constant external audits.