• 제목/요약/키워드: 다시기 위성 영상

검색결과 42건 처리시간 0.029초

2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석 (Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery)

  • 정민경;김용일
    • 대한원격탐사학회지
    • /
    • 제36권2_1호
    • /
    • pp.179-197
    • /
    • 2020
  • 지형 정규화 기법은 영상 촬영 시의 광원, 센서 및 지표면 특성에 따라 발생하는 밝기값 상의 지형적인 영향을 제거하는 방법으로, 지형 조건으로 인해 동일 피복의 픽셀들이 서로 다른 밝기값을 지닐 때 그 차이를 감소시킴으로써 평면 상의 밝기값과 같아 보이도록 보정한다. 이러한 지형적인 영향은 일반적으로 산악 지형에서 크게 나타나며, 이에 따라 산불 피해 지역 추정과 같은 산악 지형에 대한 영상 활용에서는 지형 정규화 기법이 필수적으로 고려되어야 한다. 그러나 대부분의 선행연구에서는 중저해상도의 위성영상에 대한 지형 보정 성능 및 분류 정확도 영향 분석을 수행함으로써, 고해상도 다시기 영상을 이용한 지형 정규화 기법 분석은 충분히 다루어지지 않았다. 이에 본 연구에서는 PlanetScope 영상을 이용하여 신속하고 정확한 국내 산불 피해 지역 탐지를 위한 각 밴드별 최적의 지형 정규화 기법 평가 및 선별을 수행하였다. PlanetScope 영상은 3 m 공간 해상도의 전세계 일일 위성영상을 제공한다는 점에서 신속한 영상 수급 및 영상 처리가 요구되는 재난 피해 평가 분야에 높은 활용 가능성을 지닌다. 지형 정규화 기법 비교를 위해 보편적으로 이용되고 있는 7가지 기법을 구현하였으며, 토지 피복 구성이 상이한 산불 전후 영상에 모두 적용, 분석함으로써 종합적인 피해 평가에 활용될 수 있는 밴드 별 최적 기법 조합을 제안하였다. 제안된 방법을 통해 계산된 식생 지수를 이용하여 화재 피해 지역 변화 탐지를 수행하였으며, 객체 기반 및 픽셀 기반 방법 모두에서 향상된 탐지 정확도를 나타내었다. 또한, 화재 피해 심각도(burn severity) 매핑을 통해 지형 정규화 기법이 연속적인 밝기값 분포에 미치는 효과를 확인하였다.

태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지 (Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images)

  • 정세정;박주언;이원희;한유경
    • 대한원격탐사학회지
    • /
    • 제36권5_2호
    • /
    • pp.989-1006
    • /
    • 2020
  • 건물탐지 기반의 건물 변화 모니터링은 발사예정인 차세대 중형위성 1, 2호와 같은 고해상도 다시기 광학 위성영상을 이용한 인공 구조물 모니터링 측면에서 가장 중요한 분야 중 하나이다. 하지만 지표면에 위치하는 건물들의 형태와 크기는 다양하며, 이들 주변에 존재하는 그림자 또는 나무 등에 의해 정확한 건물탐지에 어려움이 따른다. 또한, 영상 촬영 당시의 플랫폼의 방위각(Azimuth angle)과 고도각(Elevation angle)에 따라 생기는 기복 변위로 인해 건물 변화탐지 수행 시 다수의 변화 오탐지가 발생하게 된다. 이에 본 연구에서는 건물 변화탐지 결과 향상을 위해 다시기 영상 취득 당시의 태양의 방위각과 그에 따른 그림자의 주방향(Main direction)을 이용한 객체기반 건물탐지를 수행하였으며, 이후 플랫폼의 방위각과 고도각을 이용한 건물 변화탐지를 수행하였다. 고해상도 영상에 객체 분할 기법을 적용한 후, Shadow intensity를 통해 그림자 객체만을 분류하였으며, 건물 후보군 탐지를 위해 각 객체의 Rectangular fit, GLCM(Gray-Level Co-occurrence Matrix) homogeneity 그리고 면적(Area)과 같은 특징(Feature) 정보들을 이용하였다. 그 후, 건물 후보군으로 탐지된 객체들의 중심과 태양의 방위각에 따른 건물 그림자 사이의 방향과 거리를 이용하여 최종 건물을 탐지하였다. 각 영상에서 탐지된 건물 객체 간 변화탐지를 위해 객체들 간의 단순 중첩, 플랫폼의 고도각에 따른 객체의 크기 비교, 그리고 플랫폼의 방위각에 따른 객체 간의 방향 비교 총 3가지의 방법을 제안하였다. 본 연구에서는 주거 밀집 지역을 연구지역으로 선정하였으며, KOMPSAT-3와 무인항공기(Unmanned Aerial Vehicle, UAV)의 이종 센서에서 취득된 고해상도 영상을 이용하여 실험 데이터를 생성하였다. 실험 결과, 특징 정보를 이용해 탐지한 건물탐지 결과의 F1-score는 KOMPSAT-3 영상과 무인항공기 영상에서 각각 0.488 그리고 0.696인 반면, 그림자를 고려한 건물탐지 결과의 F1-score는 0.876 그리고 0.867로 그림자를 고려한 건물탐지 기법의 정확도가 더 높은 것을 확인할 수 있었다. 또한, 그림자를 이용한 건물탐지 결과를 바탕으로 제안한 3가지의 건물 변화탐지 제안기법 중 플랫폼의 방위각에 따른 객체 간의 방향을 고려한 방법의 F1-score가 0.891로 가장 높은 정확도를 보이는 것을 확인할 수 있었다.

전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지 (Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network)

  • 송아람;최재완;김용일
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.199-208
    • /
    • 2019
  • 운용 가능한 위성의 수가 증가하고 기술이 진보함에 따라 영상정보의 성과물이 다양해지고 많은 양의 자료가 축적되고 있다. 본 연구에서는 기구축된 영상정보를 활용하여 부족한 훈련자료의 문제를 극복하고 딥러닝(deep learning) 기법의 장점을 활용하고자 전이학습과 변화탐지 네트워크를 활용한 고해상도 위성영상의 변화탐지를 수행하였다. 본 연구에서 활용한 딥러닝 네트워크는 공간 및 분광 정보를 추출하는 합성곱 레이어(convolutional layer)와 시계열 정보를 분석하는 합성곱 장단기 메모리 레이어(convolutional long short term memory layer)로 구성되었으며, 고해상도 다중분광 영상에 최적화된 정보를 추출하기 위하여 커널(kernel)의 차원에 따른 정확도를 비교하였다. 또한, 학습된 커널 정보를 활용하기 위하여 변화탐지 네트워크의 초기 합성곱 레이어를 고해상도 항공영상인 ISPRS (International Society for Photogrammetry and Remote Sensing) 데이터셋에서 추출된 40,000개의 패치로 학습된 값으로 초기화하였다. 다시기 KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) 영상에 대한 실험 결과, 전이학습과 딥러닝 네트워크를 활용할 경우 기복 변위 및 그림자 등으로 인한 변화에 덜 민감하게 반응하며 분류 항목이 달라진 지역의 변화를 보다 효과적으로 추출할 수 있었으며, 2차원 커널보다 3차원 커널을 사용할 때 변화탐지의 정확도가 높았다. 3차원 커널은 공간 및 분광정보를 모두 고려하여 특징 맵(feature map)을 추출하기 때문에 고해상도 영상의 분류뿐만 아니라 변화탐지에도 효과적인 것을 확인하였다. 본 연구에서는 고해상도 위성영상의 변화탐지를 위한 전이학습과 딥러닝 기법의 활용 가능성을 제시하였으며, 추후 훈련된 변화탐지 네트워크를 새롭게 취득된 영상에 적용하는 연구를 수행하여 제안기법의 활용범위를 확장할 예정이다.

딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측 (Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do)

  • 박혜빈;이예진;박선영
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1031-1042
    • /
    • 2023
  • 인공위성은 시공간적으로 연속적인 지구환경 데이터를 제공하므로 위성영상을 이용하여 효율인 작물 수확량 예측이 가능하며, 딥러닝(deep learning)을 활용함으로써 더 높은 수준의 특징과 추상적인 개념 파악을 기대할 수 있다. 본 연구에서는 Landsat 8 위성 영상을 활용하여 다시기 영상 데이터를 이용하여 5대 수급 관리 채소인 배추와 무의 수확량을 예측하기 위한 딥러닝 모델을 개발하였다. 2015년부터 2020년까지 배추와 무의 생장시기인 6~9월 위성영상을 이용하여 강원도를 대상으로 배추와 무의 수확량 예측을 수행하였다. 본 연구에서는 수확량 모델의 입력자료로 Landsat 8 지표면 반사도 자료와 normalized difference vegetation index, enhanced vegetation index, lead area index, land surface temperature를 입력자료로 사용하였다. 본 연구에서는 기존 연구에서 개발된 모델을 기반으로 우리나라 작물과 입력데이터에 맞게 튜닝한 모델을 제안하였다. 위성영상 시계열 데이터를 이용하여 딥러닝 모델인 convolutional neural network (CNN)을 학습하여 수확량 예측을 진행하였다. Landsat 8은 16일 주기로 영상이 제공되지만 구름 등 기상의 영향으로 인해 특히 여름철에는 영상 취득에 어려움이 많다. 따라서 본 연구에서는 6~7월을 1구간, 8~9월을 2구간으로 나누어 수확량 예측을 수행하였다. 기존 머신러닝 모델과 참조 모델을 이용하여 수확량 예측을 수행하였으며, 모델링 성능을 비교했다. 제안한 모델의 경우 다른 모델과 비교했을 때, 높은 수확량 예측 성능을 나타내었다. Random forest (RF)의 경우 배추에서는 제안한 모델보다 좋은 예측 성능을 나타내었다. 이는 기존 연구 결과처럼 RF가 입력데이터의 물리적인 특성을 잘 반영하여 모델링 되었기 때문인 것으로 사료된다. 연도별 교차 검증 및 조기 예측을 통해 모델의 성능과 조기 예측 가능성을 평가하였다. Leave-one-out cross validation을 통해 분석한 결과 참고 모델을 제외하고는 두 모델에서는 유사한 예측 성능을 보여주었다. 2018년 데이터의 경우 모든 모델에서 가장 낮은 성능이 나타났는데, 2018년의 경우 폭염으로 인해 이는 다른 년도 데이터에서 학습되지 못해 수확량 예측에 영향을 준 것으로 생각되었다. 또한, 조기 예측 가능성을 확인한 결과, 무 수확량은 어느 정도 경향성을 나타냈지만 배추의 경우 조기 예측 가능성을 확인하지 못했다. 향후 연구에서는 데이터 형태에 따라 CNN의 구조를 조정해서 조기 예측 모델을 개발한다면 더 개선된 성능을 보일 것으로 생각된다. 본 연구 결과는 우리나라 밭 작물 수확량 예측을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.

변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리 (Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter)

  • 김태헌;이원희;염준호;한유경
    • 한국측량학회지
    • /
    • 제37권3호
    • /
    • pp.209-219
    • /
    • 2019
  • 위성영상은 취득 당시의 외부 환경적 요소에 의해 기하 및 방사오차가 발생하며, 이는 변화탐지에 있어 오탐지를 유발하는 원인이 된다. 이러한 기하 및 방사오차는 전처리과정인 기하보정 및 방사보정을 통해 제거해야 한다. 본 연구에서는 SURF (Speeded-Up Robust Feature)기법과 마스크필터를 활용하여 동시에 기하 및 방사보정을 자동으로 수행하는 방법론을 제안하고자 한다. SURF 기법을 통해 추출되는 정합쌍(MPs: Matching Points)은 자동 기하보정에 활용되며, 다시기 영상 간 불변특성을 보이는 지역에서 추출된다. 이러한 정합쌍의 특성을 바탕으로 상대방사보정에 활용되는 PIFs (Pseudo Invariant Features)를 선정하고, 선정된 PIFs를 중심으로 마스크필터를 생성하여 2차 PIFs를 추출했다. 추출된 정합쌍들을 활용하여 자동 기하보정을 수행한 후 기하보정된 영상에 PIFs를 활용하여 상대방사보정을 수행한 결과 기하 및 방사오차가 함께 제거된 것을 확인하였다.

지형도, 해도 및 위성영상을 이용한 방조제 축조 후의 간석지 면적 변화 추정 (Estimating the Variations of Tidal Flat Areas after the Seawall Construction from Topographic Maps, Hydrographic Charts, and Satellite Images)

  • 강문성;박승우;김상민
    • 한국수자원학회논문집
    • /
    • 제34권6호
    • /
    • pp.597-604
    • /
    • 2001
  • 본 연구에서는 지형도, 해도, Landsat TM 영상을 이용하여 아산만과 천수만 지구를 대상으로 방조제 축조 후 의 간석지 면적을 추정하였다. 지형도를 이용한 방조제 축조 후의 간석지 면적의 산정 결과는 아산만 지구와 천수 만 지구 모두 일정한 경향이 없었으며, 이는 지형도의 제작시 항공사진 촬영시간의 조위를 감안하지 않은 결과로 평가된다. 해도의 분석 결과, 아산만 지구와 천수만 지구의 방조제 준공후 연평균 간석지면적은 각각 22.2 ha/yr, 55.6 ha/yr 만큼 증가한 것으로 나타났다. 다시기 Landsat-5 TM 영상을 이용하여 무감독분휴의 ISODATA 기법으로 분석한 결과, 방조제 축조후 간석지 면적은 아산만 지구가 21.33 ha/yr, 천수만 지구가 47.3 ha/yr의 증가를 보였다. 해도 분석에 의한 간석지 면적의 증가 양상은 방조제 축조 후의 증가 비율이 축조 전의 증가 비율보다 크게 나타났으며, 방조제 축조 후의 위성영상 자료에 의한 간석지 면적의 증가 추세는 해도에 의한 분석 결과 의 경향과 유사하게 나타났다.

  • PDF

원격탐사자료와 GIS를 활용한 도시 표면온도의 공간적 분포특성에 관한 연구 (A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS)

  • 조명희;이광재;김운수
    • 한국지리정보학회지
    • /
    • 제4권1호
    • /
    • pp.57-66
    • /
    • 2001
  • 본 연구에서는 도시표면온도를 추출하기 위하여 다시기 Landsat TM band 6 영상을 이용하여 과학기술부의 4가지 모델 즉 two-point linear model, linear regression model, quadratic regression model, cubic regression model에 대하여 각각 공간분석을 실시하였으며 그 결과를 AWS(automatic weather station) 관측자료와 상관 및 회귀분석 함과 동시에 GIS 공간분석 기법을 이용하여 도시 표면온도의 공간적 분포특성을 규명하였다. Landsat TM band 6으로부터 추출된 표면온도를 기초로 하여 토지피복별 표면온도 분포를 분석한 결과 도시 및 나지 지역이 가장 높은 온도분포대를 형성하고 있었으며, 표면온도와 NDVI간의 상관분석결과 평균 -0.85 정도의 음의 상관성을 확인할 수 있었다. 이와 같은 결과는 향후 기상환경 특성을 고려한 도시계획수립에 있어 중요한 인자로 작용할 것으로 사료된다.

  • PDF

핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지 (Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring)

  • 송아람;이창희;이진민;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.991-1005
    • /
    • 2022
  • 위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.

다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지 (Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images)

  • 윤형진;정종철
    • 대한원격탐사학회지
    • /
    • 제35권6_2호
    • /
    • pp.1107-1115
    • /
    • 2019
  • 산불 피해와 관련하여 위성영상을 활용한 분석은 넓은 면적을 빠르게 분석하는 장점이 있다. 본 연구에서는 2019년 4월 4일 속초에서 발생한 산불 피해에 따른 산림의 변화 탐지를 위해 7장의 Sentinel-2A영상을 활용하였다. 산불피해지역 분류 과정은 NBR(normalized burn ratio) 값의 전후 시기 차이를 나타낸 dNBR(difference normalized burn ratio)을 통해 산불피해 정도를 7가지 단계로 분류하였다. 분류과정에서 본 연구는 식생의 재성장지수가 높은 3지역을 선정하여 해당 지역에 대한 세밀한 공간 분석을 실시하였다. dNBR 분석 결과는 활엽수림보다 침엽수림의 식생 재성장 분류가 큰 폭으로 나타났으나, NDVI를 통한 결과에서 가장 낮은 평균값을 보여주었다. 이는 침엽수림의 dNBR 오차범위로 나타난다. 시계열 결과로는 4월 20일과 5월 3일 사이를 기준으로 산불피해 면적이 큰 폭으로 감소하였다. 이는 경과한 시기의 활엽수림에서 하층 식생의 발달 및 식생 증가에 따른 피해 완화로 예를 들 수 있다. 본 연구 결과는 발생하는 산불 피해에 대하여 산림 분류 별 면적 변화를 통해 변화 탐지를 실시하였으며, NDVI와 dNBR 비교를 통해 침엽수림이 가장 높은 분류 오차가 발생한다는 결론을 도출하였다. 따라서 dNBR을 통한 영상분류과정에서 현장조사를 동반한 정밀한 국내 산불피해 등급표를 개선해야 할 필요성을 제시하였다.

Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석 (Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data)

  • 현창욱;박형동
    • 대한원격탐사학회지
    • /
    • 제28권4호
    • /
    • pp.393-407
    • /
    • 2012
  • 본 연구에서는 광학 원격탐사 영상의 획득 시 태양의 고도 및 방위가 대상 지역의 지형기복과 결합하여 나타나는 영향 및 다수의 시기에 걸쳐 획득한 영상을 비교분석하는 경우 영상 촬영시기의 차이로 인한 태양의 위치변화와 지형기복이 결합하여 나타나는 영향에 대한 보정을 시도하였다. 한라산과 다수의 분석구가 분포하는 제주도를 대상으로 Landsat 7 ETM+ 영상과 ASTER GDEM 지형자료를 사용하여 국지적조도의 모델링 시 커널의 크기를 $3{\times}3$, $5{\times}5$, $7{\times}7$, $9{\times}9$ 화소로 변화시키며 Lambertian 보정기법인 cosine 보정법과 비 Lambertian 보정기법인 c-보정법을 적용하고 보정기법 및 커널 크기에 대한 지형보정 효과를 분석하였다. 개별 영상의 육상지역에 대하여 보정을 수행한 결과 커널의 크기 $7{\times}7$을 적용한 c-보정법을 사용하였을 때에 보정효과가 가장 우수한 것으로 평가되었고, 대상지역을 ISODATA 무감독분류법을 이용하여 선택된 산림지역에 한정하여 지형보정을 수행한 경우에는 커널의 크기 $9{\times}9$를 적용한 c-보정법을 사용하였을 때에 가장 우수한 결과가 도출되었으며 다양한 지표피복이 혼합된 대상지역 대한 보정보다 효과가 큰 것으로 평가되었다. 다시기 영상의 경우 세 시기에 획득된 영상에 대하여 각각 지형보정을 수행한 후 상대적 방사도 보정을 적용하였을 때 지형보정을 수행하지 않은 경우와 비교하여 적외선 파장영역에서는 보다 균질한 반사도로 방사보정이 이루어졌으며 가시광 파장영역에서는 원영상의 반사도 패턴이 잘 보존된 결과가 도출되었다. 이상의 결과로부터 주변 지형으로부터 반사되는 에너지와 불완전한 대기보정으로 인한 잔류 대기영향을 고려하는 c-보정법을 적용하는 경우 cosine 보정법보다 우수한 지형보정 효과가 나타나며 수치표고모델에 내재된 수평과 수직방향 오차 및 위성영상과의 정합오차의 영향을 감소시기키 위하여 국지적 조도의 모델링 시 커널의 크기를 증가시키는 경우 지형보정의 효과가 증대되는 것으로 판단된다.