Mutual information is useful for analyzing nonlinear dependence in time series in much the same way as correlation is used to characterize linear dependence. We use multivariate kernel density estimators for the estimation of mutual information at different time lags for single and multiple time series. This approach is tested on a variety of hydrologic data sets, and suggested an appropriate delay time $ au$ at which the mutual information is almost zerothen multi-dimensional phase portraits could be constructed from measurements of a single scalar time series.
Journal of the Korean Data and Information Science Society
/
v.28
no.3
/
pp.533-545
/
2017
Quantile regression models provide a variety of useful statistical information by estimating the conditional quantile function of the response variable. However, the traditional linear quantile regression model can lead to the distorted and incorrect results when analysing real data having a nonlinear relationship between the explanatory variables and the response variables. Furthermore, as the complexity of the data increases, it is required to analyse multiple response variables simultaneously with more sophisticated interpretations. For such reasons, we propose a multivariate quantile regression tree model. In this paper, a new split variable selection algorithm is suggested for a multivariate regression tree model. This algorithm can select the split variable more accurately than the previous method without significant selection bias. We investigate the performance of our proposed method with both simulation and real data studies.
The effects of monthly meteorological data measured at 11 stations in South Korea on pan coefficient were analyzed to develop the four types of multiple linear regression models for estimating pan coefficients. To evaluate the applicability of developed models, the models were compared with six previous models. Pan coefficients were most affected by air temperature for January, February, March, July, November and December, and by solar radiation for other months. On the whole, for 12 months of the year, the effects of wind speed and relative humidity on pan coefficient were less significant, compared with those of air temperature and solar radiation. For all meteorological stations and months, the model developed by applying 5 independent variables (wind speed, relative humidity, air temperature, ratio of sunshine duration and daylight duration, and solar radiation) for each station was the most effective for evaporation estimation. The model validation results indicate that the multiple linear regression models can be applied to some particular stations and months.
In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.
Retention relative times(RRTs) of PAH molecules and their derivatives in gas chromatography are trained and predicted in testing sets using a multiple linear regression(MLR) and an artificial neural network(ANN). The main descriptors of PAHs and their derivatives in QSRR are the square root of molecular weight(sqmw), molecular connectivity($^1{\chi}_v$), molecular dipole moment(D) and length-to-breadth ratios(L/B). The results of MLR shows that a heavy molecule has a propensity for long retention time. L/B closely related with slot model is a good descriptor in MLR. On the other hand, ANN which is not effected by the linear dependencies among the descriptors were exclusively based on molecular weight and molecular dipole moment. The variances which shows the accuracy of prediction for retention times in testing sets are 1.860, 0.206 for MLR and ANN, respectively. It was shown that ANN can exceed the MLR in prediction accuracy.
Communications for Statistical Applications and Methods
/
v.19
no.1
/
pp.107-115
/
2012
Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.
This paper aimed to develop mesh stiffness prediction models using spur gear design parameters as input variables through a machine learning ensemble method. A dataset was generated by calculating individual stiffness using a calculation method presented in previous studies and deriving the minimum and maximum values of total mesh stiffness. Using multivariate linear regression, support vector regression, and decision tree regression, models were created to predict the minimum and maximum values of mesh stiffness. The stacking ensemble method was used to create meta models. Prediction models of three algorithms were used as base models. These Ensemble meta models were verified with specifications of gears used in actual aircraft engine starters, showing very high prediction performances. Thus, feasibility of applying Ensemble meta models to an actual gear system and their effectiveness were confirmed.
In many real-world data, multiple response variables are often dependent on the same set of explanatory variables. In particular, if several response variables are correlated with each other, simultaneous estimation considering the correlation between response variables might be more effective way than individual analysis by each response variable. In this multivariate regression analysis, least distance estimator (LDE) can estimate the regression coefficients simultaneously to minimize the distance between each training data and the estimates in a multidimensional Euclidean space. It provides a robustness for the outliers as well. In this paper, we examine the least distance estimation method in multivariate linear regression analysis, and furthermore, we present the penalized least distance estimator (PLDE) for efficient variable selection. The LDE technique applied with the adaptive group LASSO penalty term (AGLDE) is proposed in this study which can reflect the correlation between response variables in the model and can efficiently select variables according to the importance of explanatory variables. The validity of the proposed method was confirmed through simulations and real data analysis.
Relationships between hydrologic variables are often nonlinear. Usually the functional form of such a relationship is not known a priori. A multivariate, nonparametric regression methodology is provided here for approximating the underlying regression function using locally weighted polynomials. Locally weighted polynomials consider the approximation of the target function through a Taylor series expansion of the function in the neighborhood of the point of estimate. The utility of this nonparametric regression approach is demonstrated through an application to nonparametric short term forecasts of the biweekly Great Salt Lake volume.volume.
Linear regression method, proposed by Haseman and Elston(1972), for detecting linkage to a quantitative trait of sib pairs is a linkage testing method for a single locus and a single trait. However, multivariate methods for detecting linkage are needed, when information from each of several traits that are affected by the same major gene are available on each individual. Amos et al. (1990) extended the regression method of Haseman and Elston(1972) to incorporate observations of two or more traits by estimating the principal component linear function that results in the strongest correlation between the squared pair differences in the trait measurements and identity by descent at a marker locus. But, it is impossible to control the probability of type I errors with this method at present, since the exact distribution of the statistic that they use is yet unknown. In this paper, we propose a multivariate nonparametric trend test for detecting linkage to multiple traits. We compared with a simulation study the efficiencies of multivariate nonparametric trend test with those of the method developed by Amos et al. (1990) for quantitative traits data. For multivariate nonparametric trend test, the results of the simulation study reveal that the Type I error rates are close to the predetermined significance levels, and have in general high powers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.