• Title/Summary/Keyword: 다물체 동역학 시뮬레이션

Search Result 84, Processing Time 0.023 seconds

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

Development of Real Time Vehicle Dynamics Models for Intelligent Vehicle HILS (지능형 차량 HILS를 위한 실시간 차량 동역학 모델 개발)

  • Lee, Chang-Ho;Kim, Sung-Soo;Jeong, Wan-Hee;Lee, Sun-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.199-206
    • /
    • 2006
  • Real time vehicle dynamics models have been developed with the subsystem synthesis method for intelligent vehicle HILS system. Three different models for solving subsystem equations are compared in order to find out the best suitable model for HILS applications. The first model is based on the generalized coordinate partitioning technique, and the second one is on the approximate function approach, and the last one is on the constraint stabilization method. To investigate the theoretical efficiency of three proposed methods, arithmetic operators used in the formulations of three models are counted. Bump run simulations with half-sine bump have also carried out with three different models to measure the actual CPU time to validate theoretical investigation.

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

Free-wing Tilt-body Aircraft Controllerability Analysis for Change of Center of Gravity (무게중심 변화에 따른 자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics for center of gravity (CG) change. All of speed, body tilt angle and center of gravity change are simulated to determine the flight envelope by a non-linear 3-DOF mathematical model. In flight, this aircraft configuration changes by the tiltable empennage. Then, flight dynamics distinguishes from those of a conventional fixed-wing aircraft. Though flight performance and trimmability are studied by CG change, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics by CG change that distinguishes free-wing tilt-body aircraft from the conventional aircraft.

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Simulation for Belt Transport System using Crowning Roller (Crowning 롤러를 이용한 벨트 이송 시스템의 시뮬레이션)

  • Lyu, Sang-Heon;Ihu, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.676-679
    • /
    • 2006
  • The media transport in automatic office machines such as printers, ATMs, copying machines is achieved by a complicated belt system. The system generally uses a crowning roller and belt which has been well-known for its intrinsic belt centering advantage during its operation. Since the modern office machines require precise high operating speed, stabilization of media transporting system has been one of the important issues of the machine design. Even a minor defect of the belt or the roller in the transport system directly affects its operating stability. This paper delivers a simulation technique that combines a multi-body dynamics analysis routine and a FEM based flexible continuum modeling for the efficient simulation of the flexible media transport problems.

  • PDF

Simulation for Defect Diagnosis in Belt Transport System (벨트 이송 시스템의 결함 진단을 위한 시뮬레이션)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Ihn, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.366-371
    • /
    • 2006
  • As functional requirements of automatic office machines like printers, Automatic Tellex Machines(ATMs), copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

A Study on the Simulation-based Design for Optimum Arrangement of Buoyancy Modules in Marine Riser System (해양 라이저의 부력재 최적 배치를 위한 시뮬레이션 기반 설계 기법에 관한 연구)

  • Oh, Jae-Won;Park, Sanghyun;Min, Cheon-Hong;Cho, Su-Gil;Hong, Sup;Bae, Dae-Sung;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • This paper reports a simulation-based design method for the optimized arrangement design of buoyancy modules in a marine riser system. A buoyancy module is used for the safe operation and structural stability of the riser. Engineers design buoyancy modules based on experience and experimental data. However, they are difficult to design because of the difficulty of conducting real sea experiments and quantifying the data. Therefore, a simulation-based design method is needed to tackle this problem. In this study, we developed a simulation-based design algorithm using a multi-body dynamic simulation and genetic algorithm to perform optimization arrangement design of a buoyancy module. The design results are discussed in this paper.