• Title/Summary/Keyword: 다물체추적

Search Result 2, Processing Time 0.015 seconds

A Study of multi-objects tracking to protect aquaculture farms by Kalman Filter (어장보호를 위한 다물체 추적 칼만필터에 관한 연구)

  • Nam T.K.;Yim J.B.;Jeong J.S.;Park S.H.;Ahn Y.S.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, a Kalman filter application for GDSS(Group Digital Surveillance System) developed to protect an aquaculture farms is discussed GDSS is composed by a WIWAS(Watching, Identification, Warning, and Action System) and a FDS(Fishery Detection System) that will monitor incoming and outgoing vessels in the aquaculture farms. In the FDS, a tracking function to track vessels without F-AIS(Fishery Automatic Identification System) is needed and the Kalman filter is applied to track vessels around the aquaculture farms. Some simulation results for the multi-objects with white noise is presented and the adaptation possibility for tracking system is discussed.

  • PDF

MCMC Particle Filter based Multiple Preceeding Vehicle Tracking System for Intelligent Vehicle (MCMC 기반 파티클 필터를 이용한 지능형 자동차의 다수 전방 차량 추적 시스템)

  • Choi, Baehoon;An, Jhonghyun;Cho, Minho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.186-190
    • /
    • 2015
  • Intelligent vehicle plans motion and navigate itself based on the surrounding environment perception. Hence, the precise environment recognition is an essential part of self-driving vehicle. There exist many vulnerable road users (e.g. vehicle, pedestrians) on vehicular driving environment, the vehicle must percept all the dynamic obstacles accurately for safety. In this paper, we propose an multiple vehicle tracking algorithm using microwave radar. Our proposed system includes various special features. First, exceptional radar measurement model for vehicle, concentrated on the corner, is described by mixture density network (MDN), and applied to particle filter weighting. Also, to conquer the curse of dimensionality of particle filter and estimate the time-varying number of multi-target states, reversible jump markov chain monte carlo (RJMCMC) is used to sampling step of the proposed algorithm. The robustness of the proposed algorithm is demonstrated through several computer simulations.