• Title/Summary/Keyword: 다목적 최적화 기법

Search Result 88, Processing Time 0.032 seconds

Model Updating of a RC Frame Building using Response Surface Method and Multiobjective Optimization (반응표면법 및 다목적 최적화를 이용한 철근콘크리트 건물모델의 모델 개선)

  • Lee, Sang-Hyun;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-46
    • /
    • 2017
  • In this paper, a model updating procedure based on the response surface method combined with the multi-objective optimization was proposed and applied for updating of the FE models representing a low-rise reinforced concrete building before and after the seismic retrofit. The dynamic properties to be matched were obtained from vibration tests using a small shaker system. By varying the structural parameters according to the central composite design, analysis results from the initial FE model using a commercial software were collected and used to produce two regression functions each of which representing the errors in the natural frequencies and mode shapes. The two functions were used as the objective functions for multi-objective optimization. Final solution was determined by examining the Pareto solutions with one iteration. The parameters representing the stiffnesses of existing concrete, masonry, connection stiffness in expansion joint, new concrete, retrofitted members with steel section jacketing were selected and identified.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Recommendation Approach to Support Region Optimal Deployment of Multi-cloud Virtual Machine (멀티 클라우드 가상머신의 리전 배치 최적화를 지원하는 추천 기법)

  • Jinhyeok Jeon;Sumin Jeong;Joonseok Park;Keunhyuk Yeom
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.96-97
    • /
    • 2024
  • 멀티 클라우드 서비스 제공을 위해 가상머신 환경 구축 시 서비스의 성능, 비용 등을 최적화하면서 가상머신의 적절한 배치 위치를 결정하는 것은 중요한 연구 이슈 중 하나이다. 따라서 본 논문에서는 가상머신 배포 시 비용과 성능에 기반한 가상머신 배치 위치 최적화 및 추천 기법을 제시한다. 제안하는 방법은 NSGA-II(Non dominated Sorting Genetic Algorithm-II)를 활용한 다목적 최적화를 수행하고, 가중합 기반 점수 산출을 통해 최적 배치 위치를 추천한다. 멀티 클라우드의 14개 리전에서 4개의 가상머신 배치 실험을 수행한 결과, 총 1,716개의 배치 경우의 수 중 2개의 최적화 된 배치 방법을 획득하였다. 본 논문의 방법은 멀티 클라우드 환경에서 효율적인 가상머신 배치 및 마이그레이션을 통한 재배치 기법의 기반 기술로 활용될 수 있을 것이다.

Multi-objective Routing Scheme for Wireless Sensor Networks (무선 센서 네트워크상에서 다목적 라우팅 기법)

  • Kim, Min-Woo;Kim, Sung-Wook
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.6
    • /
    • pp.453-458
    • /
    • 2010
  • In the paper, we propose an energy efficient sensor network management scheme. In the proposed scheme, the modified game theory and ${\varepsilon}$-constraint techniques are sophisticatedly combined to establish energy efficient routing paths. Simulation results indicate that the proposed scheme can strike an appropriate performance balance between conflicting requirements while other existing schemes cannot offer such an attractive performance.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Objective Reduction Approach for Efficient Decision Making of Multi-Objective Optimum Service Life Management (다목적 최적화 기반 구조물 수명관리의 효율적 의사결정을 위한 목적감소 기법의 적용)

  • Kim, Sunyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • The service life of civil infrastructure needs to be maintained or extended through appropriate inspections and maintenance planning, which results from the optimization process. A multi-objective optimization process can lead to more rational and flexible trade-off solutions rather than a single-objective optimization for the service life management of civil infrastructure. Recent investigations on the service life management of civil infrastructure were generally based on minimizing the life-cycle cost analysis and maximizing the structural performance. Various objectives for service life management have been developed using novel probabilistic concepts and methods over the last few decades. On the other hand, an increase in the number of objectives in a multi-objective optimization problem can lead to difficulties in computational efficiency, visualization, and decision making. These difficulties can be overcome using the objective reduction approach to identify the redundant and essential objectives. As a result, the efficiency in computational efforts, visualization, and decision making can be improved. In this paper, the multi-objective optimization using the objective reduction approach was applied to the service life management of concrete bridges. The results showed that four initial objectives can be reduced by two objectives for the optimal service life management.

Optimization of Komsat II Structure Using Genetic Algorithm in Parallel Computation Environment (유전자 알고리즘를 사용한 분산 처리에 의한 다목적 위성 구조체의 최적화)

  • 윤진환;임종빈;박정선
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.3-7
    • /
    • 2002
  • 컴퓨터 네트워킹 기술의 발달에 힘입어 분산처리를 이용한 기법이 복잡한 구조물의 최적설계에 널리 사용되고 있다. 최적설계시 구조물이 복잡하고 설계 변수가 많아질수록 설계 변수간의 교호작용이 복잡해지고 국부최적해가 많아지는 특성이 있다. 최근의 최적 설계는 이러한 문제점을 해결하고자 다양한 전역 최적화 기법을 도입하여 적용하고 있다. 본 연구에서는 진화이론을 바탕으로 한 유전자 알고리즘과 실험계획법을 바탕으로 한 반응표면법에 분산처리 기법을 도입하여 인공위성 추진 모듈의 최적화에 적용시켰다. 그 결과 유전자 알고리즘이 조금 더 좋은 최적값을 보였으며 해석시간은 반응표면법을 적용 시켰을 경우가 훨씬 짧았다. 병렬처리 기법을 이용한 위성구조체의 최적설계에 있어 유전자 알고리즘은 해의 전역성에서 반응표면법은 시간의 효율성에서 각각 장점을 보였다.

  • PDF

A Study on Real-Coded Adaptive Range Multi-Objective Genetic Algorithm for Airfoil Shape Design (익형 형상 설계를 위한 실수기반 적응영역 다목적 유전자 알고리즘 연구)

  • Jung, Sung-Ki;Kim, Ji-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.509-515
    • /
    • 2013
  • In this study, the real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was developed for an airfoil shape design. In order to achieve the better aerodynamic characteristics than reference airfoil at landing and cruise conditions, maximum lift coefficient and lift-to-drag ratio were chosen as object functions. Futhermore, the PARSEC method reflecting geometrical properties of airfoil was adopted to generate airfoil shapes. Finally, two airfoils, which show better aerodynamic characteristics than a reference airfoil, were chosen. As a result, maximum lift coefficient and lift-to-drag ratio were increased of 4.89% and 5.38% for first candidate airfoil and 7.13% and 4.33% for second candidate airfoil.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축)

  • Kim, Tae-Soon;Jung, Il-Won;Koo, Bo-Young;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.677-685
    • /
    • 2007
  • The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.

Multi-objective Optimization of Channel Quality and Power Consumption in Visible Light Communication Systems (다목적함수 최적화기법을 이용한 가시광 무선통신시스템의 통신채널품질 및 전력소비 최적화 연구)

  • Dotronghop, Dotronghop;Hwang, Junho;Yoo, Myungsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.11-17
    • /
    • 2012
  • The VLC system undertakes both missions of illumination and wireless communication. It is difficult to design a VLC system with optimal performance due to the trade-offs between power consumption and channel quality. In this paper, the VLC system design problem is solved by using multi-objective optimization method. For optimization, the multi-objective function is formulated with respect to power consumption, received power, and SNR under the constraints on the system variables. Through the multi-objective optimization, it is possible to obtain the solutions that satisfies both minimum power consumption and maximum channel quality.