• 제목/요약/키워드: 다단 형상인발

검색결과 9건 처리시간 0.021초

원형소재 다단 형상인발 공정설계 프로그램 (Process Design Program for Multistage Profile Drawing from Round Material)

  • 김성민;이상곤;이태규;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.377-382
    • /
    • 2011
  • Up to now, process design of multistage profile drawing from initial round material is performed through trial-and-error based on experience of industrial experts. This means the increase in production cost and excessive time consuming. In this study, process design program was developed for multistage profile drawing from initial round material. The program was made using VisualLISP. Therefore, the program can be operated by AutoCAD program. In order to verify the effectiveness of the program, two stage profile drawing process for producing heavy duty guide rail was design by using the program. In addition FE analysis and profile drawing experiment were performed. As a result, the program can be used in order to design profile drawing process design.

크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구 (Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide)

  • 이상곤;이재은;이태규;이선봉;김병민
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

인발응력을 고려한 다단 형상인발 공정설계 (Process Design of Multi-pass Shape Drawing Considering the Drawing Stress)

  • 김성민;이상곤;이찬주;김병민;정명식;이선봉
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.

크로스 롤러가이드의 다단형상인발공정 패스 스케쥴에 관한 연구 (A Study on the Pass Schedule of Multi-Pas Shape Drawing Process for Cross Roller Guide)

  • 이태규;이찬주;이상곤;이선봉;김병민
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.550-555
    • /
    • 2009
  • In the multi-pass shape drawing process, the pass schedule that includes the determination of reduction ratio and intermediate die shape is very important. This study used the equal reduction, equal load, and electric field analysis method for pass schedule of the multi-pass shape drawing. The reduction ratio was calculated by the equal reduction and equal load method. And the intermediate die shape was determined by the result of the electric field analysis and the calculated reduction ratio. The proposed pass schedule method was applied to a shape drawing for producing cross roller guide. Finally, FE-analysis and shape drawing experiment were performed to verify the effectiveness of the proposed method.

VisualLISP을 이용한 다단이형인발 중간패스 단면형상설계 프로그램 개발 (Development of Intermediate Die Shape Design Program for Multi-Pass Shape Drawing by Using VisualLISP)

  • 이상곤;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.242-247
    • /
    • 2010
  • In the multi-pass shape drawing process, it is important to design the intermediate dies for producing sound products. Up to now, the design of the intermediate dies is mainly carried out by the industrial experts based on their experience. In this study, a design program was developed to design the intermediate dies for multi-pass shape drawing process. The program was programmed by using VisualLISP. In this program the intermediate dies can be designed by using the initial material shape and the final product shape. In order to verify the effectiveness, the program was applied to design the intermediate dies of multi-pass shape drawing for producing four teeth spline and gun slide. Finally, FE analysis and shape drawing experiment were performed to verify the effectiveness of the designed intermediate dies. As a result, it was possible to produce the drawn products with the required dimensional accuracy.

원형소재를 이용한 프로파일 다단 형상인발 공정설계 (Process Design for Multi-pass Profile Drawing using Round Materials)

  • 이인규;최창영;이상곤;정명식;이재욱;김다혜;조용재;김병민
    • 소성∙가공
    • /
    • 제24권4호
    • /
    • pp.234-240
    • /
    • 2015
  • Multi-pass shape drawing is very important to produce steel profiles in round samples. In the current study, a process design system is developed for a multi-pass shape drawing. In general, the number of passes for a multi-pass shape drawing is 2 to 3 when the reduction ratio, drawing stress, and productivity are considered. Therefore, calculating the drawing stress and designing the intermediated die shapes are very important. In order to calculate the drawing stress, a shape drawing load prediction method is proposed using a general axisymmetric drawing load prediction model. An intermediate die shape design method is proposed using the initial and the final product shapes. Based on this analysis, a process design system is developed for multi-pass shape drawing for steel profiles. The system works with AutoCAD. The system was applied to design a shape drawing of a spline.

다단 이형인발공정의 중간패스 단면형상 설계에 관한 연구 (A Study on Cross Sectional Shape Design of Intermediate Pass in the Multi-Stage Shape Drawing)

  • 이재은;이태규;이상곤;김성민;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.283-289
    • /
    • 2009
  • The multi-stage shape drawing is used to obtain long shaped products with high levels of dimensional accuracy and quality. It is important to design the cross sectional shapes of the intermediate passes to meet the required dimensional accuracy of the final product in the multi-stage shape drawing. Until now, the cross sectional shapes of the intermediate passes have been designed by the experiences. It is still remained unsolved problem to design the cross sectional shapes of intermediate pass drawing dies in the multi-pass shape drawing. In this study, a new technique is proposed to design the cross sectional shapes of intermediate passes. The proposed method is applied to a multi-stage shape drawing for a LM-guide which is one of the representative shape drawing products. In order to verify the effectiveness of the proposed method, FE-simulation and experiments have been carried out. The dimensional accuracy of the proposed method is compared with that of the conventional shape drawing process designed by the industrial engineers.

중공형 LM-Guide Rail 제조를 위한 다단 형상 인발공정의 중간 다이스 설계에 관한 연구 (Design Method for the Intermediate Dies in Multi-Stage Shape Drawing: The Case for a Hollow Linear Motion Guide Rail)

  • 이경훈;김상현;이선봉;김동환;김성민;김병민
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.155-160
    • /
    • 2015
  • One of the most important aspects in multi-stage shape drawing is the proper design of the intermediate dies especially to provide adequate metal distribution. In the current study, a method for designing the intermediate dies has been developed to manufacture hollow linear motion guide rails by multi-stage shape drawing. The design method is based on the modified virtual die method. The effectiveness of the proposed design method was verified by FE-simulations and experiments using Mn55Cr carbon steel. From the results of the FE-simulations and the experiments, the proposed design method led to a drawn product with a sound shape. The dimensional tolerances of the product were within the allowable specified tolerances.