Journal of the Institute of Electronics Engineers of Korea CI
/
v.47
no.3
/
pp.36-41
/
2010
An advanced form of Multistage Feature-based Classification Model(AMFCM), called AMFCM, is proposed in this paper. AMFCM like MFCM does not use the concatenated form of available feature vectors extracted from original data to classify each data, but uses only groups related to each feature vector to classify separately. The prpposed AMFCM improves the contribution rate used in MFCM and proposes a confusion table for each local classifier using a specific feature vector group. The confusion table for each local classifier contains accuracy information of each local classifier on each class of data. The proposed AMFCM is applied to the problem of music genre classification on a set of music data. The results demonstrate that the proposed AMFCM outperforms MFCM by 8% - 15% on average in terms of classification accuracy depending on the grouping algorithms used for local classifiers and the number of clusters.
Journal of the Korean Institute of Telematics and Electronics
/
v.27
no.10
/
pp.68-77
/
1990
In this paper, a neural patten recognition method for the automatic circuit diagram reading system is proposed. The proposed procedure to recognize a deformed logic symbols is composed of three stages: feature detection, log mapping, and pattern classification. In the feature detection stage, a modified competitive learning algorithm where each pattern has the inhibition weight as well as the activation weight is developed. The global information of hand-written logic symbols is obtained by the feature detection neural network having both the inhibition and activation weights. The obtained global data is then transformed into a log space by the conformal mapping where according to the Schwartz's theory about the human visual signal process-ing, the degree of rotation and the scale change are mapped into the translation change. Logic symbols are finally classified by a three layer perceptron trained by the error back propagation algorithm. The computer simulation demonstrates that the proposed multistage neural network system can recognize well the deformed patterns of hand-written logic circuit diagrams.
신용평점을 위한 부도예측의 분류 문제를 다루는데 있어서 통계적 판별분석 및 인공신경망 및 유전자알고리즘 등을 이용한 데이터 마이닝의 방법들이 일반적으로 고려되어왔다. 이 연구에서는 수리계획법을 응용하여 classification gap을 고려한 이단계 수리계획 접근방법을 신용평가에 적용하는 방법론을 제안하여 수리계획법을 통한 신용평가모형 구축의 가능성을 제시한다. 1단계에서는 선형계획법을 이용해서 대출 신청자에게 대출을 허가할 것 인지의 여부를 결정하게 되는 대출 심사 filtering으로의 적용단계이고, 2단계에서는 정수계획법을 이용하여 오분류 비용이 최소가 되도록 하는 판별점수를 찾는 과정으로 모형을 구성한다. 개인 대출 신청자의 데이터(German Credit Data)에 대하여 피셔의 선형 판별함수, 로지스틱 회귀모형 및 기존의 수리계획 기법들과의 비교를 통해서 제안된 모델의 성능을 평가한다. 이단계 수리계획 접근법의 평가 결과를 통하여 신용평가모형에의 적용가능성을 기존 통계적인 접근방법 및 수리계획 접근법과 비교하여 제시하고 있다.
Proceedings of the Computational Structural Engineering Institute Conference
/
2001.04a
/
pp.233-240
/
2001
Artificial neural networks(ANN) have been exploited where the relationship among information is very complicated and nonlinear. It is appropriate to computerize the information and knowledge used in the preliminary design stage where it lacks of formality of representation of designers' experience and intuition. However, most designers start the preliminary design stage with very little information. Therefore, the ANN model for this stage must be designed to have input much less than output. This case usually causes big troubles such as in learning time, convergence and reliability of solutions. To address this problem, this paper proposes multi-level neural networks for progressive structural design considering that all the design information can not be obtained at a time but are growing gradually. The use of multi-level networks developed in this paper has been proved its validity by applying it to the preliminary design of cable-stayed bridges.
Journal of the Korea Society of Computer and Information
/
v.4
no.1
/
pp.47-53
/
1999
In medical field, the computer has been used in the automatic processing of data derived in hospital. the automation of diagonal devices, and processing of medical digital images. In this paper, we classify red blood cell into 16 class including normal cell to the automation of blood analysis to diagnose disease. First, using UNL Fourier and invariant moment algorithm, we extract features of red blood cell from blood cell image and then construct multi-layer backpropagation neural network to recognize. We proof that the system can give support to blood analyzer through blood sample analysis of 10 patients.
The Transactions of the Korea Information Processing Society
/
v.5
no.10
/
pp.2600-2608
/
1998
This paper proposes an algorithm for off line recognition of handwritten characters, especially effective for large-set characters such as Korean and Chinese characters. The algorithm is based on a minimum distance dlassification method which is simple and easy to implement but suffers from low recognition performance. Two strategies have been developed to improve its performance; one is multi-stage pre-classification and the other is candicate reordering. Effectiveness of the algorithm has been proven by and experimet with the samples of 574 classes in a handwritten Korean character catabase named PE02, where 86.0% of recognition accuracy and 15 characters per second of processing speed have been obtained.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2005.11a
/
pp.191-194
/
2005
본 논문에서는 방송 영상에서 조명효과와 크기변화 등에 강인한 얼굴패턴 검출기법을 제시한다. 제안된 얼굴검출 모델은 영상 전처리 과정과 얼굴패턴 검출 과정으로 이루어진다. 전처리 과정은 조명변화에 대한 보정기능과 다중필터에 의한 후보영역 선별기능으로 구분된다. 얼굴패턴 검출과정은 다단계의 특징지도 생성과정과 패턴분류 과정으로 이루어진다. 특징지도를 생성하기 위하여 가보(Gabor) 필터계층을 포함하는 CNN(Convolutional Neural Networks)모델을 도입하였다. 다양한 배경을 고려한 효과적인 학습을 위하여 본 논문에서는 억제성의 뉴런(Inhibitory neuron)을 포함하는 구조의 CNN모델을 적용한다. CNN으로부터 추출되는 특징집합은 최종 단계에서 WFMM(Weighted Fuzzy Min Max) 모델을 사용하여 분류된다. 이때 사용되는 특징집합의 크기는 분류기의 규모 및 계산량의 결정적인 역할을 준다. 이에 본 연구에서는 최종 분류 과정에 사용되는 특징의 수를 효과적으로 줄이기 위해 FMM모델을 사용하는 적응적인 특징 선별 기법을 제안한다. 또한 실제 영상을 통한 실험결과로부터 제안된 이론의 타당성을 고찰한다.
Ham, Dae-Sung;Lee, Duk-Ryong;Choi, Kyung-Ung;Oh, Il-Seok
The Journal of the Korea Contents Association
/
v.10
no.1
/
pp.10-18
/
2010
Due to a large number of classes in Hangul character recognition, it is usual to use the six-type preclassification stage. After the preclassification, the first consonent, vowel, and last consonent can be classified separately. Though each of three components has a few of classes, classification errors occurs often due to shape similarity such as 'ㅔ' and 'ㅖ'. So this paper proposes a hierarchical recognition method which adopts multi-stage tree structures for each of 6-types. In addition, to reduce the interference among three components, the method uses the recognition results of first consonents and vowel as features of vowel classifier. The recognition accuracy for the test set of PHD08 database was 98.96%.
Though many techniques for the damage assessment of structures have been studied recently, most of them can be only applied to simple structures. Therefore, practical damage assessment techniques that evaluate the damage location and the damage state for large structures need to be developed. In this study, a damage assessment technique using a neural network is developed, in which the bilevel damage assessment procedure is proposed to evaluate the damage of a large structure from the limited monitoring data. The procedure is as follows ; first, for the rational selection of damage critical members, the members that affect the probability of failure or unusual structural behavior are selected by sensitivity analysis. Secondly, the monitoring points and the number of sensors that are sensitive to the damage severity of the selected members are also selected through the sensitivity analysis with a proposed sensitivity measurement format. The validity and applicability of the developed technique are demonstrated by various examples, and it has been shown that the practical information on the damage state of the selected critical members can be assessed even though the limited monitoring data have been used.
Journal of the Korean Data and Information Science Society
/
v.27
no.2
/
pp.327-335
/
2016
The People's Republic of China has vigorously been pursuing the internationalization of the Chinese Yuan or Renminbi after the financial crisis of 2008. In this view, an abrupt increase of use of the Chinese Yuan in the onshore and offshore markets are important milestones to be one of important currencies. One of the most frequently used methods to forecast volatility is GARCH model. Since a prediction error of the GARCH model has been reported quite high, a lot of efforts have been made to improve forecasting capability of the GARCH model. In this paper, we have proposed MLP-GARCH and a DL-GARCH by employing Artificial Neural Network to the GARCH. In an application to forecasting Chinese Yuan volatility, we have successfully shown their overall outperformance in forecasting over the GARCH.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.