• Title/Summary/Keyword: 다공질 철소결체

Search Result 2, Processing Time 0.015 seconds

Elastic-Plastic Response of Sintered Porous Iron under Combined Tension and Torsion (인장/비틀림 조합하중하의 다공질 철소결체의 탄성-소성 거동)

  • 김기태;권녕삼
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.41-48
    • /
    • 1991
  • A set of constitutive equations is formulated to predict elastic-plastic strain hardening response of sintered porous iron under combined tension and torsion. The proposed constitutive equations were capable of predicting characteristic behaviors of porous metals. Agreement between theoretical curves and experimental data for elastic-plastic response of sintered porous iron was very good for various initial porosities.

Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and their In-vitro and In-vivo Study for Biocompatibility (다중압출공정을 이용한 알루미나 연속다공질체 제조 및 그의 생체친화성 평가를 위한 In-vitro, In-vivo 실험)

  • 강인철;조순희;송호연;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.560-566
    • /
    • 2004
  • To fabricate the continuously porous alumina bodies by multi-extrusion process, carbon powder and ethylene vinyl acetate were used as a pore forming agent and a binder, respectively. As the change of extrusion pass number, reduction ratio as well as the volume fraction of core and tube, the porous alumina bodies having various kind of pore size and porosity could be obtained. The porous bodies showed continuous pore shape, high specific surface as well as high bending strength, which were compared with those of commercial alumina bodies. In-vitro study was carried out using MG-63 osteoblast cells to investigate of their biocompatibility. As a result, the cells grew well on top and bottom as well as inside surface of pore. From the result of in-vivo study of 3-dimensional porous alumina bodies using rats, it was confirmed that any inflammatory response was not found in the subcutaneous tissue around porous body. Also the porous bodies removed from the rats were fully covered with well-developed fibrous tissues and showed the formation of new capillary blood vessels.