• Title/Summary/Keyword: 다공성 층상구조

Search Result 8, Processing Time 0.023 seconds

Effects of Energy-Dissipation by Stepped Gabion Slope in Rapidly Varied Flow (계단식 Gabion의 경사에 따른 급변류의 에너지 소산효과)

  • Kuem, Do-Hun;Lee, Chang-Yun;Bae, Sang-Soo;Lee, Seung-Yun;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1605-1610
    • /
    • 2006
  • 계단식 Gabion 낙차공은 다공체 구조물로서 시공하기 쉽고 안정적이며, 하천유수에 대하여 저항성이 있어 하천구조물로서 널리 자주 사용되고 있다. Gabion은 다공체로서 유수력을 쉽게 흡수함으로써 감세지 계단표면의 위치에너지를 소산시키는데 매우 효과적이다. Stephenson은 1/10 축적을 가진(투수성이 있고 하천낙차공에만 적용되는 투수성 상류면을 가진 높이 4m까지의) 계단식 Gabion을 월류 실험한 바가 있으며, 그 연구결과가 실무에서 인용되고 있다. 그러나 본 연구에서는 급변류의 에너지 소산효과를 조사하기 위하여 중력이 다른 힘들보다 지배적이므로 Froude 상사법칙을 이용하고 1/1, 1/2, 1/3 경사를 가진 계단을 적용하였다. 실험에서는 경사를 가진 높이 4m 계단식 위어와 게비온 감세지 실험, 계단모형실험(보통구조, 층상구조, 끝단이 올라간 구조, 턱을 가진 구조), 격리수맥흐름, 부분수맥흐름으로 제안하여 경사에 따른 급변류의 에너지 소산효과에 대한 결과를 얻을 수 있었다.

  • PDF

Preparation of Porous Layered Carbon Using Magadiite Template (Magadiite 주형을 이용한 층상 카본의 합성)

  • Choe, Seok-Hyon;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.408-412
    • /
    • 2005
  • Porous layered carbon was prepared by interlayer pyrolysis of pyrolysis fuel oil (PFO) using magadiite template and successive dissolution of template. Particle morphology was plate type with d-spacing of approximately 0.7 nm and it had constant interlayer space. Specific surface area was $147{\sim}385m^2/g$ depending upon template type, mixing ratios and pyrolysis time.

Effects of Temperature on A Synthesized Birnessite (온도 변화에 따른 합성 버네사이트 특성 변화 연구)

  • Park, Soo Oh;Kim, Young Jae;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • A series of birnessite was synthesized at 25, 40, 60, and $80^{\circ}C$, respectively. Intensities of XRD and the ratio of signal to noise of the peaks for samples increases with increasing temperature up to $60^{\circ}C$, whereas the intensity and ratio for a sample synthesized at $80^{\circ}C$ decrease, showing that crystallinity of the birnessite synthesized at $60^{\circ}C$ is better than that of the synthesized at $80^{\circ}C$. However, BET surface areas for these two samples show that the surface area increases 39.4 to 89.7 $m^2/g$ with increasing synthesizing temperature from 60 up to $80^{\circ}C$, indicating that a small surface area is shown in a well-crystallized birnessite rather than that of a poorly crystallized birnessite. SEM images show that morphologies for samples are seriously influenced by temperature. The morphology of the synthesized at 25 shows a round-shape, while a plate-like morphology is shown in the synthesized birnessite at $80^{\circ}C$. In addition, a porous layered structure is also shown in the synthesized birnessite at $80^{\circ}C$. These results suggest that physicochemical properties of the synthesized birnessite are sensitively affected by mechanical changes of parameters such as temperature during the synthesization.

Physical and Mechanical Characteristics of Basalts in Northwestern and Southeastern Jeju Island (제주도 북서부 및 남동부 현무암의 물리적 & 역학적 특성)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2015
  • Volcanic rocks in Jeju Island have vesicular structure caused by various environmental factors, and indicate the differences in geological and mechanical characteristics from region to region. In addition, the bedrock of Jeju Island shows stratified structure, that is, soft layers composed of pyroclastic rocks or cavities are irregularly developed between the basalt layers by several times of volcanic activity. In this study, various physical tests and unconfined compressive strength test were conducted for intact rocks sampled in northwestern onshore and offshore of Jeju Island. The results obtained in the tests were compared with the physical and mechanical characteristics of intact rocks sampled in southeastern offshore of Jeju Island. As a results, it was confirmed that the physical and mechanical characteristics of basalts sampled in northwestern Jeju Island were similar to those of basalts sampled in southeastern offshore of Jeju Island. In addition, it was possible to estimate approximate design parameters from the correlation of mechanical properties with physical properties of basalts in Jeju Island.

Synthesis of Aluminophosphate using Structure Directing Agent containing Piperidine Moiety: Effect of SDA on Crystal Structure (피페리딘 구조유도분자를 이용한 알루미노포스페이트 제올라이트 합성: 피페리딘 구조유도분자가 결정구조 형성에 미치는 영향)

  • Shin, Hye Sun;Jang, Ik Jun;Shin, Na Ra;Ju, Bit Na;Cho, Sung June
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.657-663
    • /
    • 2011
  • Structure directing agent(SDA) containing piperidine moiety such as piperidine(PI), 2-methylpiperidine (MPI), 2,6-dimethylpiperidine(DMPI) and 2,2,6,6,-tetramethylpiperidine(TMPI), respectively has been utilized to synthesize aluminophosphate zeolite using hydrothermal method. The gel composition was $1.0Al_2O_3:1.0P_2O_5:0.76SDA:45H_2O$ and the hydrothermal heating was performed in an oven at 443 K and for 7 days at static mode. The obtained zeolitic material contained a lamellar structure when PI was used as the SDA. With a progressive increase of the SDA size, various structures of aluminophosphate including AlPO-5 of AFI structure were obtained. The aluminophosphate of SAS structure was formed when the largest TMPI was utilized as the SDA, which was confirmed by the Rietveld refinement. The result of $^{27}Al$ and $^{31}P$ MAS NMR of the sample suggested that Al and P were incorporated into the framework of the aluminophosphate.

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.

Estimation of Deformation Modulus of Basaltic Rock Masses in Northeastern and Northwestern Jeju Island (제주도 북동부 및 북서부 현무암반의 변형계수 추정)

  • Yang, Soon-Bo;Boo, Sang-Pil
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.5-15
    • /
    • 2019
  • In this study, the in situ deformation moduli, which were measured by borehole loading tests at basaltic rock masses located in the northeastern onshore and offshore and the northwestern onshore of Jeju Island, were examined in relation to RQD and RMR. The measured deformation moduli were also compared with the estimated deformation moduli from conventional empirical formulas using RQD and RMR. In addition, the measured deformation moduli were analyzed with respect to both the velocity ratio ($V_P/V_S$) and dynamic Poisson's ratio, which were obtained from the elastic wave velocities measured by velocity logging tests. As results, with only RQD, it was inappropriate to evaluate the quality of the Jeju island basaltic rock masses, which are characterized by vesicular structures, to select a measurement method of in situ deformation moduli, and to estimate the deformation moduli. On the other hand, it was desirable to evaluate the quality of the Jeju Island basaltic rock masses, and to estimate the deformation moduli by using RMR. The conventional empirical formulas using RMR overestimated the deformation moduli of the Jeju Island basaltic rock masses. There was qualitative consistency in the relation between velocity ratio and deformation moduli. To estimate appropriately the deformation moduli of the Jeju Island basaltic rock masses, empirical formulas were proposed as the function of RMR and velocity ratio, respectively.

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application (슈퍼커패시터 활용성 자가조립된 폴리아닐린, 그래핀 옥사이드 그리고 피트산으로 구성된 다층 초박막)

  • Lee, Myungsup;Hong, Jong-Dal
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.