• Title/Summary/Keyword: 다공률

Search Result 171, Processing Time 0.027 seconds

Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion (Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석)

  • 김연승;변영철;황정호
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.3-17
    • /
    • 1999
  • Smoldering is a non-flaming combustion mode, characterized by thermal degradation and c charring of the virgin material, evolution of smoke and emission of visible glow. A big fire may @ occur even in a confined environment having a limited amount of oxygen, due to smoldering c combustion through a porous solid material. This paper presents a theoretical analysis on the effect of smoldering combustion on fire occurrence based on a report about fire investigation of a real f fire accident. It is assumed that the propagation of the smolder wave is one-dimensional, d downward, opposing an upward forced flow and steady in a frame of reference moving with the s smolder wave. Smoldering combustion is modeled by a one-step reaction mechanism, without c considering pyrolysis. It is found that dominant parameters controlling smoldering combustion i include mass flux of oxidizer entering the reaction zone and void fraction of solid fuel. It is also found that the mechanism of transition to flaming is critically influenced by these two parameters.

  • PDF

Geophysical Implications for Configurational Entropy and Cube Counting Fractal Dimension of Porous Networks of Geological Medium: Insights from Random Packing Simulations (지질매체 공극 구조에 대한 구성 엔트로피와 상자집계 프랙탈 차원의 지구물리학적 의미 및 응용: 무작위 패킹 시뮬레이션 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.367-375
    • /
    • 2010
  • Understanding the interactions between earth materials and fluids is essential for studying the diverse geological processes in the Earth's surface and interior. In order to better understand the interactions between earth materials and fluids, we explore the effect of specific surface area and porosity on structural parameters of pore structures. We obtained 3D pore structures, using random packing simulations of porous media composed of single sized spheres with varying the particle size and porosity, and then we analyzed configurational entropy for 2D cross sections of porous media and cube counting fractal dimension for 3D porous networks. The results of the configurational entropy analysis show that the entropy length decreases from 0.8 to 0.2 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$, and the maximum configurational entropy increases from 0.94 to 0.99 with increasing porosity from 0.33 to 0.46. On the basis of the strong correlation between the liquid volume fraction (i.e., porosity) and configurational entropy, we suggest that elastic properties and viscosity of mantle melts can be expressed using configurational entropy. The results of the cube counting fractal dimension analysis show that cube counting fractal dimension increases with increasing porosity at constant specific surface area, and increases from 2.65 to 2.98 with increasing specific surface area from 2.4 to $8.3mm^2/mm^3$. On the basis of the strong correlation among cube counting fractal dimension, specific surface area, and porosity, we suggest that seismic wave attenuation and structural disorder in fluid-rock-melt composites can be described using cube counting fractal dimension.

Biological Nutrient Removal using Porous Media (다공성 담체를 이용한 생물학적 영양물질 제거)

  • Cho, Chang-Sik;Lee, Sang-Houck
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • This study aims to examine the modified $A^2/O$ process is useful to reduce the environmental pollution caused by nutrient in wastewater. Specific results are as follows: The removal rate was evaluated at each time period, ie., 18h, 8h, 6h, and 3h after the reaction started. The anoxic rate was more than 94-97% from 18h to 6h but was less than 50% before 6h. Thus, the test of nitrification was done using 6h as the optimal anoxic retention time and the aerobic retention time set at 24h. When the flow change was 1:1, the average ammonia concentration inputted was $30mg/{\ell}$. Returned top nitric acid solution and the concentration of ammonia solution falling into the anoxic reactor was about 50% of the initial concentration, and the flow change was 1:2, the concentration of ammonia falling into the anoxic reactor was about 62% of that of influxed ammonia. And the results of this study showed that the nitrogen removal rate can be improved by inputting untreated nitric acid and changing the flow of top nitrate solution using the modified $A^2/O$ method.

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

Effects of SIS/PLGA Porous Scaffolds and Muscle-Derived Stem Cell on the Formation of Tissue Engineered Bone (SIS/PLGA 담체와 근육유래 줄기세포를 이용한 생체조직공학적 골재생)

  • Kim Soon Hee;Yun Sun Jung;Jang Ji Wook;Kim Moon Suk;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2006
  • Tissue engineering techniques require the use of a porous biodegradable/bioresorbable scaffold, which server as a three-dimensional template for initial cell attachment and subsequent tissue formation in both in vitro and in vivo. Small intestinal submucosa (SIS) has been investigated as a source of collagenous tissue with the potential to be used as biomaterials because of its inherent strength and biocompatibility. SIS-loaded poly(L-lactide-co-glicolide)(PLGA) scaffolds were prepared by solvent casting/particle leaching. Characterizations of SIS/PLGA scaffold were carried out by SEM, mercury porosimeter, and so on. Muscle-derived stem cells can be differentiated in culture into osteoblasts, chondrocytes, and even myoblasts by the controlling the culture environment. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide(MTT) test. Osteogenic differential cells were analyzed by alkaline phosphatase(ALP) activity. SIS/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of SIS on the osteoinduction compared with controlled PLGA scaffolds. Thin sections were cut from paraffin embedded tissues and histological sections were conducted hematoxylin and eosin (H&E), Trichrome, and von Kossa. We observed that bone formatioin of SIS/PLGA hybrid scaffold as natural/synthetic scaffold was better thean that of only PLGA scaffold. It canb be explained that SIS contains various kinds of bioactive molecules for osteoinduction.

Porous Structures with Negative Poisson's Ratio using Pattern Transformation Triggered by Deformation (변형에 의한 패턴변화를 활용한 음의 포아송비 다공성 구조)

  • Oh, Myung-Hoon;Choi, Myung-Jin;Byun, Tauk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.275-282
    • /
    • 2017
  • In this paper, using a pattern transformation triggered by deformation, we propose a porous structure that exhibits the characteristic of negative Poisson's ratio in both tension and compression. Due to the lack of torque for rotational motion of ligaments, the existing porous structure of circular holes shows positive Poisson's ratio under tension loading. Also, the porous structure of elliptic holes has a drawback of low durability due to stress concentration. Thus, we design curved ligaments to increase the rotational torque under tension and to alleviate the stress concentration such that strain energy is uniformly distributed in the whole structure. The developed structure possesses better stiffness and durability than the existing structures. It also exhibits the negative Poisson ratio in both compression and tension of 10% nominal strain. Through nonlinear finite element analysis, the performance of developed structure is compared with the existing structure of elliptic holes. The developed structure turns out to be significantly improved in terms of stiffness and durability.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

Preparation and Characterization of PVdF Microporous Membranes with PEG Additive for Rechargeble Battery (Poly(ethylene glycol)를 첨가한 이차전지용 poly(vinylidene fluoride) 미세다공성 분리막의 제조와 물성)

  • Nam, Sang-Yong;Jeong, Mi-Ae;Yu, Dae-Hyun;Koh, Mi-Jin;Rhim, Ji-Won;Byun, Hong-Sik;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.84-93
    • /
    • 2008
  • Poly(vinylidene fluoride) has received much attention in the last several years for the lithium secondary batteries. In this study, to enhance the porosity, PVdF was prepared by phase inversion method using as an additive, PEG (poly(ethylene glycol)), with N,N-dimethylformamid as a solvent. The pores are generated during the solvent and non-solvent exchange process in the coagulation bath filled with non-solvent (distilled water). The surface and cross-section of the membranes were observed with a scanning electron microscopy (SEM). The mechanical property of the membrane was determined by using an universal testing machine (UTM) and thermal property was verified by heat shrinkage. Uniformed sponge structure of PVdF-PEG membrane for the lithium secondary batteries was prepared with 10 wt% of PEG concentration in the PVdF-PEG solution. Porosity, elongation and tensile strengh of the membrane were 87%, 75.45%, and 275. 27 MPa respectively.

A Study on the Characteristics of VOC Removal by Cordierite Filter Loaded with Catalyst (촉매를 담지한 코디어라이트 필터의 VOC 제거 특성에 관한 연구)

  • Chung, Kyung-Won;Kim, Yong-Nam;Park, Jeong-Hyun;Choi, Beom-Jin;Cho, Eul-Hoon;Lee, Hee-Soo
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • After porous filters were manufactured using cordierite powder whose mean particle size was 200 ${\mu}m$, they were loaded with catalysts such as Pt, Pd, Cu, Co, La, $V_2O_5$ by vacuum impregnation method. And we investigated the activity of catalysts used for catalytic oxidation of VOC by passing toluene through catalyst-loaded filters. The porous filters had the apparent porosity of 62%, the compressive strength of about 10 MPa and the pressure drop of 15 mmHg at the face velocity of 5 cm/sec. The loading of catalyst decreased the porosity of the filters and increased the pressure drop and the compressive strength of them. Among the catalysts, Pt had the highest activity for catalytic oxidation and could remove more than 90% of toluene at 250 $^{\circ}C$. Below 250 $^{\circ}C$, the content of Pt catalyst had an influence on the conversion of toluene but didn't show any influence above 250 $^{\circ}C$.

Improving Road Construction Productivity by Developing a Programmatic Resource Distribution System for Equipment Sharing in Multi-sectioned Road Construction Projects (다(多)공구 도로 건설 현장의 장비 공유시스템 구축을 통한 생산성 향상에 관한 연구)

  • Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.134-145
    • /
    • 2013
  • Road construction projects are parcelled into sub-sections which are then tendered to individual contractors for construction. The type of work and equipments used are similar for each sub-section. However, such equipment are not shared on a regular basis among the contractors and only partially performed in an informal and ad hoc manner. Consequently, road construction equipment suffer from low utilization and increased leasing costs. Lean construction and Program Management approaches stress the importance of collaboration among individual participants in a way that increases the collective cost savings of the entire project. This research attempts to apply such theories with the notion that under utilization of expensive equipment can be improved by formalizing a way to enable the sharing of equipment in large, public sponsored, multi-sectioned road construction projects. A system was developed consisting of a set of criteria and processes that enables automatic allocation of equipment to multiple sites on daily basis, in a way that minimizes equipment costs and improves their individual utility. The system was then applied in allocating three different types of equipment to an actual road construction project with four sub-sections for three months. A new metric, nDPR showed that utilization improved for all equipment and also equipment related costs were decreased by 4.45%. Results also showed that increased shared opportunities of equipment correspond to an increase in utilization and cost savings.